
Redpanda 21.10.1
Kyle Kingsbury
2022-04-29

Redpanda is a distributed streaming system compatible with the Kafka wire protocol. We tested Redpanda
versions 21.10.1 through 21.11.2, as well as development builds through January 30, 2022. We found three live-
ness and seven safety issues, ranging from crashes and aborted reads to inconsistent offsets, circular information
flow, and lost/stale messages. We also discuss some potentially surprising behaviors, including an ambiguously
named error and confusing documentation around write isolation in Kafka’s transaction model. Redpanda has
resolved seven of these issues, though some fixes aren’t yet released. One crash and an issue involving lost/stale
messages remain under investigation, and three more issues require only documentation. This work was funded
by Redpanda Data, and conducted in accordance with the Jepsen ethics policy.

1 Background

Redpanda is a Kafka-compatible distributed stream-
ing system based around append-only logs. Compared
to Kafka, Redpanda aims to offer users lower latencies
and reduced operational complexity. It uses the Raft
consensus algorithm internally, rather than depend-
ing on a separate installation of Zookeeper. Redpanda
speaks Kafka’s wire protocol: rather than ship their
own client libraries, Redpanda uses regular Kafka
clients.

Like Kafka, Redpanda provides a set of named, par-
tially ordered logs called topics. Each topic is sharded
into one or more partitions,1 each of which is a totally
ordered log of messages. A message’s position within
a partition is identified by a unique monotonically in-
creasing integer offset, which provides that total order.
Offsets may be sparse: some offsets in the log are for
internal messages, like transaction metadata, which
are invisible to clients.

Kafka clients are split into several parts. Users write
(produce) messages to partitions using a producer
client, and read (poll) messages from partitions using
a consumer client. Users may produce and consume
to and from manually specified partitions, or allow the
system to automatically select which partition a mes-
sage is written to, and which partition(s) a consumer
reads from.

Polling messages does not delete them. Instead, con-
sumers emulate “consuming from a queue” by reading
successive offsets from a given partition. Consumers
can either assign themselves specific partitions and
manage offsets themselves, or subscribe to a topic and
allow Redpanda to automatically manage partitions
and offsets. Offsets can be committed to Redpanda,
which stores them durably so that crashed consumers
can pick up where they (or their forebears) left off.

1.1 Safety

As of December 14th, 2021, Redpanda’s home page
compared Kafka to Redpanda. Where Redpanda of-
fered “zero data loss by default”, Kafka was marked
“Caveat: reduces performance”. Redpanda engineers
explained that Kafka’s default configuration may ac-
knowledge writes before fsync. This might allow
Kafka to lose messages when nodes fail. Redpanda
nodes, by contrast, only acknowledges writes once they
are fsynced on a majority of replicas. Redpanda also
advertised its use of the Raft consensus algorithm for
safety. Other than these claims, Redpanda’s docu-
mentation was relatively quiet on questions of fault-
tolerance, durability, consistency, and other safety
guarantees.

Like Kafka, Redpanda is intended for a variety of
streaming applications. Some of these are safety-
critical: messages must never be lost. Others focus
on throughput or latency: skipping some messages is
fine. Both Redpanda and Kafka clients expose a num-
ber of configuration settings which trade off between
speed and safety. Users should be aware of these set-
tings, and choose appropriately for their workload.

First, the producer acks setting controls how many
nodes must acknowledge a producer’s write before it is
considered committed. The strongest setting is acks
= all (also written -1). In Kafka this waits for all
nodes in the in-sync replica set (ISR) to acknowledge
the write, but does not fsync by default. In Redpanda
this waits for a majority of nodes to fsync. A value of
0 allows Redpanda to confirm a message without writ-
ing it to any node; a single-node crash could cause data
loss. Choosing 1 waits for a single node to acknowledge
the message, which allows data loss in the event that
node fails. The default, as of Kafka’s 3.0.0 client, is
acks = all.

1In this article, the word partition can refer to either a network omission fault (“network partition”) or an ordered log within a
Redpanda topic (“Redpanda partition,” “topic-partition”).

1

https://redpanda.com/redpanda
https://kafka.apache.org/
https://redpanda.com/?utm_source=report&utm_medium=content&utm_campaign=2022_jepsenreport&utm_assettype=website&utm_assetname=homepage
https://jepsen.io/ethics.html
https://redpanda.com/?utm_source=report&utm_medium=content&utm_campaign=2022_jepsenreport&utm_assettype=website&utm_assetname=homepage
https://kafka.apache.org/
https://raft.github.io/
https://raft.github.io/
https://zookeeper.apache.org/
https://kafka.apache.org/intro
https://web.archive.org/web/20211214170816/https://vectorized.io/redpanda/
https://docs.redpanda.com/docs
https://docs.redpanda.com/docs
https://kafka.apache.org/documentation/#producerconfigs_acks
https://redpanda.com/blog/kafka-redpanda-availability/


Kafka producers can automatically retry writes,
which means they may append a single message multi-
ple times to a topic. To prevent this, clients may either
set enable.idempotence = true or retries = 0. The
Kafka Java client enables idempotence by default.2

Consumers can automatically commit their current
offsets to Kafka. Since consumers advance their lo-
cal offsets as soon as they see a message, this can
cause messages to be considered committed even if
they haven’t been processed yet. If a consumer crashes
after auto-commit but before processing that message,
it might never be tried again. To avoid this, consumers
should set enable.auto.commit = false. The default
is true, which could effectively lead to message loss.

When a consumer begins reading from a partition, and
no offset has been committed to Redpanda, that con-
sumer has to choose an offset to start at. This behavior
is controlled by auto.offset.reset. The default value,
latest, starts clients near the most recent offset in
the log. If clients crash without committing an offset,
this could allow them to skip over some messages. To
ensure clients read all messages in this scenario, use
earliest, which rewinds fresh clients to the earliest
log offset available. Of course, log expiration policies
could also cause consumers to miss messages.

1.2 Transactions

Redpanda implements Kafka’s transaction protocol,
but this support remained behind a feature flag in
version 22.1.1. Redpanda offers users no specific
documentation on how to use transactions, relying
on Kafka’s documentation instead. Kafka’s official
documentation specifies that consumers can choose
between two isolation levels: read_uncomitted and
read_committed. read_uncommitted allows consumers
to see “all messages, even transactional messages
which have been aborted.” The read_committed set-
ting “will only return transactional messages which
have been committed.”

Readers familiar with other databases may know that
these terms have existing meanings: they have been
studied and formalized since at least the mid-1990s.
In Adya, Liskov, & O’Neil’s formalism, read uncom-
mitted prevents phenomenon G0 (write cycle). Write
cycle occurs when two (or more) transactions’ writes
interleave on one or more objects. For example, trans-
action 𝑇1 writes some object 𝑥 before 𝑇2 writes 𝑥, and
𝑇2 writes some 𝑦 before 𝑇1 writes 𝑦, given some to-
tal order of writes to 𝑥 and 𝑦. Read committed pro-
scribes three additional phenomena: G1a (aborted
read), G1b (intermediate read), and G1c (circular in-
formation flow). Aborted read means a transaction ob-
serves a value written by a transaction which did not
commit. Intermediate read involves reading a state

from the middle of a transaction. Circular information
flow encompasses dependency cycles between transac-
tions where either 𝑇1 writes some 𝑥 before 𝑇2 writes
𝑥, or 𝑇2 reads something 𝑇1 wrote. Of course, these
anomalies pertain to histories of reads and writes over
registers, not logs, but one can imagine analogous phe-
nomena in Kafka’s data model.

The isolation_level documentation makes it seem
clear that read_committed proscribes G1a. What of
G0, G1b, and G1c? Kafka’s official documentation
is somewhat vague3 on this point, but it does argue
two key properties. First, transactions (when com-
bined with idempotence) ought to ensure what Kafka
calls exactly-once semantics: one can consume mes-
sages from some topics, and send new messages to
other topics, such that the new messages resulting
from those particular input messages are produced
only once. Second, transactions provide atomicity:

Transactional delivery allows producers to
send data to multiple partitions such that
either all messages are successfully deliv-
ered, or none of them are.

While the Kafka documentation quoted above does not
appear to discuss this, a 2017 Confluent blog post pro-
vides some caveats around atomicity: consumers may
not be subscribed to all partitions involved in a trans-
action, so they may see only some, not all, of its effects.
Another Confluent post describes Kafka’s atomicity as
eventual:

… either all messages in the batch are even-
tually visible to any consumer or none are
ever visible to consumers.

Jepsen is unsure whether “eventual” here is meant
to imply a lack of real-time or session guarantees
(e.g. transactions appear to execute in partial/total or-
der, but there may be some time between transaction
commit and visibility), or if eventual implies a lack of
isolation: e.g. reads and/or writes from multiple trans-
actions may be interleaved together. Redpanda be-
lieves both senses are true.

Confluence’s Transactional Messaging wiki page pro-
vides five simple requirements that transactional ap-
plications in Kafka expect. At first, this looks like
a promising summary for users trying to understand
transaction semantics:

1. Atomicity: A consumer’s application
should not be exposed to messages
from uncommitted transactions.

2. Durability: The broker cannot lose
any committed transactions.

3. Ordering: A transaction-aware con-
sumer should see transactions in the

2At least, it claims to. As we’ll see, the story is slightly more complicated.
3Documentation and blog posts about Kafka transactions tend to explain behavior in terms of implementation, rather than invari-

ants. Users who want to know: “can two transactions’ writes interleave?” must infer the answers from descriptions of complex
Kafka internals: producer transactional IDs, sequence numbers, epochs, zombie fencing, high watermarks, last stable offsets,
etc. Terms like “atomic” are deployed ambiguously. Two documents will cross-reference one another while making contradictory
claims. While Jepsen has read carefully and engaged Redpanda’s support in writing this analysis, we frequently read between
the lines to guess at what kind of invariants users might expect from Kafka & Redpanda. Any errors are, of course, Jepsen’s
alone.

2

https://kafka.apache.org/documentation/#producerconfigs_enable.idempotence
https://kafka.apache.org/documentation/#streamsconfigs_retries
https://kafka.apache.org/documentation/#consumerconfigs_enable.auto.commit
https://kafka.apache.org/documentation/#consumerconfigs_enable.auto.commit
https://kafka.apache.org/documentation/#consumerconfigs_enable.auto.commit
https://kafka.apache.org/documentation/#consumerconfigs_isolation.level
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
http://pmg.csail.mit.edu/papers/adya-phd.pdf
http://pmg.csail.mit.edu/papers/icde00.pdf
https://jepsen.io/consistency/models/read-uncommitted
https://jepsen.io/consistency/models/read-uncommitted
https://jepsen.io/consistency/models/read-committed
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/#upgrade_11_exactly_once_semantics
https://www.confluent.io/blog/transactions-apache-kafka/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://cwiki.apache.org/confluence/display/KAFKA/Transactional+Messaging+in+Kafka
https://developer.confluent.io/learn/kafka-transactions-and-guarantees/
https://cwiki.apache.org/confluence/display/kafka/transactional+messaging+in+kafka
https://www.confluent.io/blog/transactions-apache-kafka/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/


original transaction-order within each
partition.

4. Interleaving: Each partition should
be able to accept messages from both
transactional and non-transactional
producers

5. There should be no duplicate mes-
sages within transactions.

On closer reading, this is even more confusing. “Atom-
icity” here means neither all-or-nothing commit nor
the appearance of isolated point-in-time evaluation.
Instead, atomicity is defined as the prevention of
aborted read. The ordering property appears ambigu-
ous: “transaction order” could mean an order over
transactions, or an order over operations within each
transaction. The example which follows suggests they
mean both: given concurrent transactions X1 and
X2…

Since X2 is committed first, each partition
will expose messages from X2 before X1.

From this Jepsen concludes “transaction order” means
(at least) the order of commits. Although writes from
X1 and X2 were interleaved in real time, consumers
should process all messages from X2 strictly before all
messages from X1. This suggests that G0 (write cycle)
ought to be prohibited.

Redpanda believes this wiki page is wrong on both
points. They point to a somewhat difficult-to-find
Google Doc which serves as the design document for
Kafka’s transactional protocol, which states that write
atomicity refers to writes succeeding or failing as a
unit, and then links to the aforementioned wiki page
which says atomicity means the prevention of aborted
read. The design document also provides several sce-
narios in which atomicity would fail to hold:

1. For compacted topics, some messages
of a transaction maybe overwritten by
newer versions.

2. Transactions may straddle log seg-
ments. Hence when old segments are
deleted, we may lose some messages in
the first part of a transaction.

3. Consumers may seek to arbitrary
points within a transaction, hence
missing some of the initial messages.

4. Consumer may not consume from all
the partitions which participated in a
transaction. Hence they will never be
able to read all the messages that com-
prised the transaction.

These are reasonable constraints given Kafka’s data
model. But what happens if we don’t use compaction,
don’t seek to arbitrary offsets, and do consume from
all partitions which participate in a transaction? Are
writes isolated from one another?

To be specific: if transaction 𝑇1 commits before 𝑇2, do
all offsets written by 𝑇1 fall before those written by
𝑇2? Many transaction systems buffer their writes and
apply them more or less atomically at commit time,
but a careful reading of this design document suggests

that Kafka does not do this. Instead, Kafka chooses
to add writes to the log immediately as each request
in a transaction occurs—and to preserve performance,
does not lock partitions for the duration of a transac-
tion’s writes. This means that writes from two differ-
ent transactions may interleave in offsets.

What about the order in which consumers process
those writes? The Consumer section of the design doc-
ument explains that messages are always delivered in
offset order. This suggests that the wiki is incorrect,
and transactional writes should visibly interleave.

Indeed, a subsection titled “Discussion on Transac-
tion Ordering” explains that Kafka considered hav-
ing consumers buffer and re-order these writes so
that they were processed in transaction order. This
approach would provide some additional measure of
transactional isolation and improved latency. How-
ever, Kafka users expect that messages are delivered
in offset order, and many parts of the Kafka API use a
single high water mark to indicate which offsets have
been processed. Delivering messages in transaction
order would force consumers to track each offset in-
dividually, at least for a window of concurrent trans-
actions. Perhaps the Confluence Wiki reflects earlier
goals for the transaction system, and was never up-
dated as the design evolved.

From all of these sources, a sufficiently diligent
reader could conclude that Kafka (and therefore
Redpanda) transactions allow G0, prohibit G1a at
read_committed, and allow G1b. Whether G1c (cycles
involving both write-write and write-read dependen-
cies) may occur remains unclear.

1.3 Transactional IDs

Each producer performing a transaction in
Kafka/Redpanda must choose a transactional ID: a
string whose meaning is poorly defined but which, if
chosen incorrectly, may cause the transaction system
to exhibit undefined behavior. We must therefore dis-
cuss it in detail.

The official Kafka documentation describes the
transactional.id producer setting like so:

The TransactionalId to use for transac-
tional delivery. This enables reliabil-
ity semantics which span multiple pro-
ducer sessions since it allows the client
to guarantee that transactions using the
same TransactionalId have been com-
pleted prior to starting any new transac-
tions. If no TransactionalId is provided,
then the producer is limited to idempotent
delivery. If a TransactionalId is config-
ured, enable.idempotence is implied. By
default the TransactionId is not config-
ured, which means transactions cannot
be used. Note that, by default, transac-
tions require a cluster of at least three
brokers which is the recommended setting
for production; for development you can

3

https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit
https://cwiki.apache.org/confluence/display/KAFKA/Transactional+Messaging+in+Kafka
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit#heading=h.od2aaa53rbv
https://cwiki.apache.org/confluence/display/KAFKA/Transactional+Messaging+in+Kafka
https://kafka.apache.org/30/documentation.html


change this, by adjusting broker setting
transaction.state.log.replication.factor.

This is essentially all of the guidance which Kafka’s
official documentation offers regarding transactional
IDs. What are “reliability semantics”? It’s not clear:
this is the only use of the word “reliability” in the doc-
umentation. The presence of a transactional ID im-
plies idempotence, and has something to do with en-
forcing some kind of exclusion between multiple pro-
ducer sessions sharing the same transactional ID, but
how? And what transactional ID should we use?
The Java client documentation offers little more clar-
ity:

To use the transactional producer and the
attendant APIs, you must set the transac-
tional.id configuration property….
The purpose of the transactional.id is to
enable transaction recovery across multi-
ple sessions of a single producer instance.
It would typically be derived from the shard
identifier in a partitioned, stateful, applica-
tion. As such, it should be unique to each
producer instance running within a parti-
tioned application.

“Unique to each producer instance” suggests that we
might want to choose a different transactional ID
when e.g. a worker crashes and restarts. Should it be
globally unique? The phrase “derived from the shard
identifier” suggests that we might reuse transactional
IDs across instances. And what is a session exactly?
Many database clients have a first-class session API,
but there appears to be no such construct in the Java
Kafka client. Perhaps “session” refers to a single in-
stance of a producer (e.g. a single client object in a
single JVM on a single node), and “producer instance”
refers to multiple such instances over time, which are
intended to be logically related.
The Kafka transactions design document has a sec-
tion titled “Transactional Guarantees” which elabo-
rates on how transactional IDs ensure idempotence
and transaction recovery across sessions:

When provided with such an Transaction-
alId, Kafka will guarantee:

1. Idempotent production across applica-
tion sessions. This is achieved by fenc-
ing off old generations when a new in-
stance with the same TransactionalId
comes online.

2. Transaction recovery across applica-
tion sessions. If an application in-
stance dies, the next instance can be
guaranteed that any unfinished trans-
actions have been completed (whether
aborted or committed), leaving the
new instance in a clean state prior to
resuming work.

When no transactional ID is provided, the design doc-
ument says each producer still “enjoys idempotent se-
mantics and transactional semantics within a single
session.”4

A 2017 Confluent blog post on transactions seems to
confirm this interpretation, explaining that once a pro-
ducer registers its transactional ID with the cluster,
it prevents any other producers (“zombies”) with that
same transactional ID from writing to the cluster.

We solve the problem of zombie instances
by requiring that each transactional pro-
ducer be assigned a unique identifier called
the transactional.id. This is used to iden-
tify the same producer instance across pro-
cess restarts.

This hints that we should choose a unique identifier
for each logical producer, and reuse it if the logical
producer (e.g.) crashes and restarts, creating a new
instance of the KafkaProducer client.5

The blog post also has a section helpfully titled “How
to pick a transactional ID”, which explains:

The key to fencing out zombies properly is
to ensure that the input topics and parti-
tions in the read-process-write cycle is al-
ways the same for a given transactional.id.
If this isn’t true, then it is possible for some
messages to leak through the fencing pro-
vided by transactions.

For instance, in a distributed stream
processing application, suppose topic-
partition tp0 was originally processed by
transactional.id T0. If, at some point later,
it could be mapped to another producer
with transactional.id T1, there would be no
fencing between T0 and T1. So it is possi-
ble for messages from tp0 to be reprocessed,
violating the exactly-once processing guar-
antee.

The plot thickens: each transactional ID must con-
sume from a fixed set of input topic-partitions. If we
fail to maintain this invariant, messages might be pro-
cessed multiple times—presumably, once per transac-
tional ID.

As Kafka user Tomasz Guz explains, this critical sec-
tion of Confluent’s post is misleading. Two clients
with different transactional IDs which each consume
from a single, fixed topic-partition can both process
the same message. The “key to fencing” is not ensur-
ing each transactional ID has a constant set of input
topic-partitions. One must instead (or, possibly, also)
ensure that each input topic-partition is consumed by
at most one transactional ID. Confluent’s use of “for in-
stance” is not just explaining the consequences of the
previous paragraph. It appears to be introducing an
entirely different constraint.

4Redpanda says this is wrong: one cannot execute transactions at all without a transactional ID.
5Again, Confluent’s blog post uses “producer” and “producer instance” to (apparently) identify multiple instances of a KafkaProducer

client. To be explicit, we write “producer” for a single KafkaProducer client object, and “producers using the same transactional
ID” or “logical producer” for all producers using the same transactional ID.

4

https://javadoc.io/static/org.apache.kafka/kafka-clients/3.0.0/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit#heading=h.mmbff48qbcw6
https://www.confluent.io/blog/transactions-apache-kafka/
https://tgrez.github.io/posts/2019-04-13-kafka-transactions.html


Redpanda engineers make an even stronger claim: if
two different transactional IDs ever interact with the
same topic, guarantees within a single transactional
ID, and even within a single transaction, go out the
window. Users should expect duplicate delivery even
within a single transaction ID. Jepsen cannot locate a
source for this claim; Redpanda suspects it is implied
somewhere within the sixty-seven pages of the trans-
action design document.

2 Test Design

We designed a test suite for Redpanda using the
Jepsen testing library. We began our testing with ver-
sion 21.10.1, and followed up with 21.10.2, 21.10.3, and
21.11.2, as well as various development builds through
January 30, 2022. We also briefly tested Kafka 3.0.0
to compare its behavior to Redpanda. Our tests ran
on both LXC containers and EC2 nodes, each running
Debian Buster, with cluster sizes of 5–10 nodes.

To interact with Redpanda we used the Java Kafka
client at version 3.0.0. For administrative tasks like
configuring Redpanda and checking on cluster status,
we used Redpanda’s rpk command or HTTP APIs ex-
posed by Redpanda. Producers, consumers, and ad-
min clients were always initialized with a single node
for bootstrap_servers, but we did not interfere with
smart client discovery: clients could talk to any node
freely. This may have kept us from seeing safety vio-
lations.

All consumers shared a single consumer group, and
when using subscribe, committed offsets manually af-
ter each poll operation. For transactional workloads,
we gave each producer a unique transactional ID6 and
instead of committing offsets via commitSync, added
them to each transaction which performed a poll—
including read-only transactions.

We applied several configuration changes to clients in
order to achieve faster recovery during failures, and to
ensure safety. Our consumers ran with significantly
shorter timeouts (generally under 10 seconds), and
with tunable isolation_level, auto_offset_reset,
and enable_auto_commit, each of which has safety
implications. Producers also ran with shorter time-
outs, and configurable acks, enable_idempotence, and
retries. In general we tested with the safest possible
settings: default topic replications of 3, auto-commit
false, acks all, retries 1,000, idempotence enabled,
isolation level read_committed, auto_offset_reset of
earliest, automatic creation of topics on the server
disabled, and polling via assign.

During our tests we introduced a variety of faults, in-
cluding single- and multi-node crashes and process
pauses, as well as network partitions between servers.
We jumped clocks forward and backwards by up to

several hundred seconds, as well as strobing clocks
rapidly between different times. We also performed
cluster membership changes, where we politely decom-
missioned nodes, then assigned them new (unique)
node IDs and re-added them to the cluster. At all
times we preserved at least 3 active nodes (those not
adding or removing), and we used a new API, added
to Redpanda after 21.11.2 for this work, to determine
when a node add or remove operation was complete.
We did not test the impolite removal of nodes.

2.1 List-Append

The first workload we designed repurposed an existing
Jepsen workload based on appends of unique values
to lists. Each list is identified by a unique key. In our
Redpanda list-append workload, we mapped each key
to a distinct topic and partition in Redpanda. Topics
were created before their first write, and our genera-
tor of operations rotated through different keys over
time, limiting each key to roughly a thousand writes
before creating a fresh key.7

Each operation in this test either appended a single
unique value to the list identified by a particular key,
or read all values in some key’s list. We performed ap-
pends by turning the key into a Kafka TopicPartition
and calling producer.send to append that value to
the given topic-partition. Reads were implemented by
seeking the consumer to the beginning of the given
topic-partition, fetching the maximum offset of that
partition via consumer.endOffsets, and then repeat-
edly calling consumer.poll until the maximum offset
is observed.
We analyzed these histories by passing them to Elle,
which inferred a dependency graph between each op-
eration based on the values of reads and appends, plus
per-process and real-time orders. Elle looked for cy-
cles in that graph, and presented them as consistency
anomalies.

2.2 Queue

As a streaming system, Redpanda’s data model
looks somewhat like a list, but our read pattern in
list-append isn’t how most people use Kafka and
Redpanda. Instead, consumers typically assign or
subscribe to a topic infrequently, and call poll
repeatedly—making assumptions about what those
polls will return. We wanted to know: are the offsets
returned by poll contiguous? Monotonic? Can they
skip over gaps? We designed a separate queue work-
load, which maps more closely to normal Redpanda
use, to investigate these questions.
Like the list-append workload, we uniquely identified
topic-partitions by integer keys, and rotated sends and
polls across different keys over time.

6We also experimented with giving every producer the same transactional ID, but this essentially reduced the test to a single
thread. Instead, we opted to use multiple transactional IDs, and not to look for exactly-once semantics across multiple trans-
actional IDs. Redpanda maintains this is dangerous and could lead to unknown invariant violations, but Jepsen feels it is a
reasonable interpretation of the (vague, somewhat contradictory) documentation.

7We experimented with both high and low caps on messages per key, but for most of our tests chose 1,024: high enough to require
multiple calls to poll to fully read a partition.

5

https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit#heading=h.o8gioa9dcbnm
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit#heading=h.o8gioa9dcbnm
https://github.com/jepsen-io/redpanda/tree/516655ef0d5e954a77d7297b296fd1a531f30465
https://github.com/jepsen-io/jepsen
https://docs.confluent.io/clients-kafka-java/current/overview.html
https://docs.confluent.io/clients-kafka-java/current/overview.html
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/client.clj#L56-L58
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L678
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L590-L595
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L400
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L400
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/client.clj#L60-L112
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/client.clj#L60-L112
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/client.clj#L114-L156
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/client.clj#L114-L156
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/core.clj#L341-L352
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/core.clj#L341-L352
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/core.clj#L25-L27
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/nemesis.clj#L259-L309
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/db/redpanda.clj#L448-L454
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/list_append.clj#L43-L127
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/list_append.clj#L20-L37
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/workload/list_append.clj#L49-L52
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/workload/list_append.clj#L153-L160
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/workload/list_append.clj#L153-L160
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/list_append.clj#L80-L81
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/list_append.clj#L80-L81
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/list_append.clj#L56-L77
https://github.com/jepsen-io/elle
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L710-L767
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L710-L767


In our queue workload, operations were of one of three
basic classes. The first, crash, simulated a client fail-
ure: it terminated the logical process which executed
that crash operation, closing its Kafka consumer and
producer. Jepsen would then create a fresh process
with a new producer and consumer to take its place.
The second class of operations, assign or subscribe,
updated the set of topics/partitions the consumer re-
ceived messages from when calling poll: either as-
signing a specific set of topic-partitions (each corre-
sponding to a single key), or subscribing to the set of
topics which covered the requested key.
The third class we called txn operations. Each con-
tained a sequence of poll or send micro-operations.
Those which performed only polls or sends were la-
beled poll and send, rather than txn, but their
structure was otherwise identical. Each send micro-
operation sent a single message value (a unique in-
teger) to a specific key, and returned an [offset,
value] pair, given the offset which the Kafka pro-
ducer returned. Each poll micro-operation called
consumer.poll once, and returned a map of keys to se-
quences of [offset, message] pairs observed for that
key. For example, here is a completed representation
of a txn operation:

[[:poll {1 [[2 3] [4 5]]}]]
[:send 6 [7 8]]

This transaction polled key 1 and received two mes-
sages back: value 3 at offset 2, and value 5 at offset 4.
Then it sent a single message 8 to key 6, which was
placed at offset 7.
For non-transactional workloads, we constrained ev-
ery send/poll/txn operation to contain exactly one
micro-operation. For transactional workloads, we al-
lowed multiple micro-operations and wrapped them
all in a Kafka transaction.
To analyze histories of these operations, we first con-
structed for each key a mapping of offsets to sets of
message values observed at that offset, via either send
or poll. We expect this mapping to be at least injec-
tive: each offset should refer to only a single message.
If we observed more than one value at an offset, we
recorded this as an inconsistent offset error. Since we
only inserted values once, we also expected to observe
no duplicate messages. If we observed a single value
at multiple offsets, we identified that as a duplicate
error.
When our mapping was bijective, we could construct a
total order over all values with observed offsets for a
given key. This order might not cover all messages in
the topic-partition: calls to send and poll might not
have returned offsets. Nor could we necessarily tell
which offset an indeterminate-and-unobserved send
might have produced. Moreover, not every offset con-
tained a value: Redpanda uses some log offsets to
store transaction metadata. We therefore collapsed
our sparse offset logs into a dense version order which
mapped each value to a unique index 0, 1, 2, ….
From this version order we could check for several
additional errors, which came in symmetric flavors.
We checked subsequent pairs of send micro-operations,

and subsequent pairs of polls as well, to see if the off-
sets for their values were strictly monotonic (i.e. al-
ways increasing) and did not skip over intermediate
indices. To distinguish behavior within a transaction
versus between different transactions, we looked for
non-monotonic or skipped offsets between two differ-
ent transactions, and also within a single transaction
(which we called an internal error).

For aborted reads, we simply searched for any poll
which returned a value sent by a failed operation. For
lost writes, we identified the highest read index for
each key, then checked to make sure that all lower in-
dices were also polled.

As a streaming system, Redpanda allows consumers
to fall arbitrarily far behind producers: there is
no expectation that consumers see up-to-date mes-
sages. Calls to consumer.poll tend to return suc-
cessful, empty result sets regardless of whether the
client is caught up on the latest messages, running
behind, or talking to nodes which are completely of-
fline, or have never run Redpanda at all. This makes
it surprisingly difficult to distinguish between mes-
sages which are permanently lost versus simply de-
layed. Safety and liveness violations are—in this
case—indistinguishable.

To address this problem, we kept track of a set of
unseen messages: those whose send was successfully
acknowledged, but which never appeared in any con-
sumer’s poll results. We plotted the number of un-
seen messages over time, expecting it to be nonzero
for most of each test run. However, at the end of each
test, we healed all network partitions, restarted and
resumed any crashed or paused nodes, reset clocks,
and allowed the cluster up to an hour to heal. Dur-
ing that healing process we performed no additional
sends. Instead, we repeatedly polled every client in
an attempt to catch up to any unseen messages. If we
failed to observe some acknowledged messages, we re-
ported that as an unseen error.

3 Results

Our testing identified three liveness, seven safety, and
two ambiguous issues in Redpanda. We begin with du-
plicate writes, crashes, and inconsistent offsets, then
discuss lost/stale messages and aborted reads. The
second half of our results covers issues with transac-
tions, starting with write cycles, aborted reads, and
circular information flow, then moving to internal non-
monotonic polls, another case of aborted read, and lost
writes.

3.1 Duplicate Writes by Default (#1)

The Kafka Java client uses a default setting of
enable.idempotence = true, which the Kafka docu-
mentation claims:

6

https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L615
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L606-L650
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L652-L688
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L308-L424
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1259-L1315
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1678-L1692
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1678-L1692
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1313
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1313
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1259-L1315
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1437-L1676
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1437-L1676
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1317-L1334
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1317-L1334
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1336-L1429
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1336-L1429
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L843-L870
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L843-L870
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L1694-L1728
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#producerconfigs_enable.idempotence
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#producerconfigs_enable.idempotence


When set to ‘true’, the producer will ensure
that exactly one copy of each message is
written in the stream. If ‘false’, producer re-
tries due to broker failures, etc., may write
duplicates of the retried message in the
stream.

However, with Redpanda 21.10.1, any pause, crash, or
network partition could cause duplicated writes with
the default settings. For example, consider this test
run, in which each Kafka producer logged that it was
using idempotent writes:

ProducerConfig values:
...

enable.idempotence = true

And yet reads of a single topic-partition returned the
following messages:

[1 2 ... 25 26 27 28 29 30 26 27 28 29 30]

This workload calls producer.send() only once
per message—but messages 26 through 30 were
duplicated, thanks to the client’s internal retry
mechanism. This is the precise scenario which
enable.idempotence is designed to prevent.

Stranger still, if one explicitly sets enable.idempotence
= true in the producer config, it refuses to connect to
Redpanda at all:

UnsupportedVersionException: The bro-
ker does not support INIT_PRODUCER_ID

This is somewhat surprising, because Redpanda’s
FAQ claims:

Is Redpanda Fully Kafka API Compatible?

We support all parts of the Kafka API, in-
cluding the transactions API that we added
in release 21.8.1.

In fact Redpanda 21.10.1 required setting a configu-
ration flag (enable_idempotence) to support Kafka’s
idempotence mechanism. Although the Java Kafka
client’s logging claims idempotence is enabled with
the default settings, and although the Kafka documen-
tation says the same, there may be a difference be-
tween “enabled by default” versus “enabled explicitly.”
The client may be attempting some sort of feature ne-
gotiation with the broker, and when it detects that the
broker does not support idempotence, it might silently
disable the feature.

We enabled idempotence in Redpanda by setting two
server-side configuration variables:

rpk config set redpanda.id_allocator_replication 3
rpk config set redpanda.enable_idempotence true

The upcoming release of Redpanda 22.1.1 will enable
idempotence by default, which should resolve this is-
sue.

3.2 Duplicate Writes with Idempotence
Explicitly Enabled (#3039)

With both client- and server-side idempotence explic-
itly enabled, we again observed duplicate writes in ver-
sion 21.10.1 with single-node faults, including process
crashes, pauses, or network partitions. For instance,
this test with just process pauses induced five dupli-
cate messages out of 2922 attempts:

{:key 7, :value 259, :count 2}
{:key 8, :value 544, :count 2}
{:key 8, :value 542, :count 2}
{:key 8, :value 543, :count 2}
{:key 8, :value 545, :count 2}

On key 8, polls observed messages 542, 543, 544, and
545 twice, interleaved with non-duplicated messages
like 546. Take this series of messages returned from
one call to poll:

... 541 542 543 545 544 543 542 544 546 545 547

In every case we observed, duplicates were limited to
a narrow time window. The original request needed to
succeed, but also have its acknowledgement message
fail to arrive at the client on time, in order for a retry
to occur and create a duplicate.

This behavior was caused by Redpanda failing to
perform deduplication of sent messages. When
the sequence numbers used to prevent dupli-
cates arrived out of order, Redpanda returned
an OutOfOrderSequenceException error. This
seems like a reasonable choice, but it interacted
poorly with clients, which interpreted that error
as one they could retry. On encountering an
OutOfOrderSequenceException, Kafka clients would
increment their local epoch, reset their sequence num-
ber, and retry the request—which allowed it to take
place multiple times.

In #3038 and #3039 Redpanda added support for
server-side deduplication. Version 21.10.2 included
deduplication support and did not exhibit duplicate
messages; version 21.10.3 improved performance.

3.3 Assert Failure Deallocating Partitions (#3335)

In version 21.10.1, when Redpanda deallocated a par-
tition from a node, it could occasionally crash. The
crash handler itself then crashed due to a malformed
format string, causing error messages like:

ERROR 2021-12-21 05:51:35,176 [shard 0] assert -
../../../src/v/cluster/scheduling/allocation_
node.cc:44@deallocate: failed to log message:
fmt='Assert failure: ({}:{})
'_allocated_partitions > allocation_capacity{0}
&& _weights[core] > 0' unable to deallocate
partition from core {} at node {}':
fmt::v7::format_error (cannot switch from
automatic to manual argument indexing)

This error (#3335) appeared when testing member-
ship changes. Redpanda is still investigating.

7

http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20211119T115356.000-0500.zip
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20211119T115356.000-0500.zip
https://vectorized.io/docs/faq/#Is-Redpanda-Fully-Kafka-API-Compatible
https://vectorized.io/docs/configuration/
https://vectorized.io/docs/configuration/
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#producerconfigs_enable.idempotence
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/db/redpanda.clj#L136-L138
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20211230T161323.000-0500.zip
https://github.com/vectorizedio/redpanda/pull/3038
https://github.com/vectorizedio/redpanda/pull/3039
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20211221T003916.000-0500.zip
https://github.com/vectorizedio/redpanda/issues/3335


3.4 Assert Failure in
response.partition_index (#3336)

In rare cases involving process crashes, Redpanda
21.11.2 could occasionally encounter an assertion fail-
ure like

ERROR 2021-12-20 20:22:03,884 [shard 0] assert -
Assert failure: (../../../src/v/kafka/server/
handlers/fetch.cc:732) 'response.partition_index
== _it->partition_response->partition_index'
Response and current partition ids have to be
the same. Current response 0, update 1

We observed this error (#3336) with process crashes.
It was caused by a mechanism which attempted to en-
sure fairness when polling multiple partitions: when
a fetch request obtained messages from one partition,
the server would re-order an internal cache to move
that partition to the end, ensuring that the next fetch
request would hit a different partition. However, this
mechanism did not update a second data structure
in the response message to match the new partition
order. Redpanda has addressed this issue in devel-
opment builds, and the fix is scheduled for version
22.1.1.

3.5 Inconsistent Offsets (#3003)

Infrequently, process kills or network partitions
caused Redpanda 21.10.1 to exhibit duplicate mes-
sages which appeared at multiple offsets in the log—
despite using acks=all and retries=0. For instance,
this test run contained the following send operations
on key 4:

{:type :ok,
:f :send,
:value [[:send 4 [365 381]]],
:time 987763642489,
:process 1737}

{:type :ok,
:f :send,
:value [[:send 4 [366 382]]],
:time 988052525845,
:process 1600}

Here, [:send 4 [365 381]] denotes a successful ac-
knowledgement of a send to key 4: message 381 was
stored at offset 365. A quarter of a second later, a
call to consumer.poll returned message 381 at that
offset:

{:type :ok,
:f :poll,
:value [[:poll {4 [[0 2]

...
[364 380]
[365 381]
[366 382]]}]],

:time 988295099584,
:process 1327}

8.7 seconds later, that same process issued another
call to consumer.poll, which returned additional mes-
sages for key 4:

{:type :ok,
:f :poll,
:value [[:poll {4 [[367 381]

[368 382]
[369 387]
...]}]],

:time 997028597232,
:process 1327}

Messages 381 and 382 were shifted two slots later in
the log! Instead of occurring at offsets 365 and 366 (re-
spectively), they now also occurred at offsets 367 and
378. This client processed these messages twice.
This could have been a simple duplication error—no
contradictory observations of offsets 365 or 366 oc-
curred in this test run. However, additional test-
ing provided direct evidence of contradictory offsets
in Redpanda 21.10.1. Consider this test run, where
network partitions and process crashes caused 1,160
offsets to contain conflicting messages. On key 4, for
example, several messages were reordered to earlier
log offsets:

8

http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20211220T200525.000Z.zip
https://github.com/vectorizedio/redpanda/issues/3336
https://github.com/redpanda-data/redpanda/pull/4271
https://github.com/redpanda-data/redpanda/pull/4271
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20211219T132841.000-0500.zip
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20211217T145815.000-0500.zip


This diagram shows each operation’s view of the log for
key 4, sorted by the time those operations completed.
Time flows from top to bottom, and log offsets are ar-
ranged from left to right. When a single log offset con-
tains conflicting values, those values are highlighted
with a colored background.
Messages 36 through 43 were reordered to earlier off-
sets in the log. Some filled in gaps in the offsets that
were initially reported to .send(); others overwrote
messages already extant at their offsets. The result-
ing offsets could result in disagreement on the order
of messages: senders believed 53 was inserted before
41, but pollers saw 41 before 53.
Meanwhile, on key 3, two processes both believed they
were the writer of offset 78, eleven seconds apart. The
first set offset 78 to 86, and the second set offset 78 to
90.

{:type :ok,
:f :send,
:value ([:send 3 [78 86]]),
:time 490857418971,
:process 732}

{:type :ok,
:f :send,
:value ([:send 3 [78 90]]),
:time 501920547263,
:process 806}

Readers of key 3 only ever observed the latter write:

{:type :ok,
:f :poll,

:value ([:poll {3 (...
[76 86]
[77 87]
[78 90]
[79 91]
[80 92]
...)}]),

:time 511060527454,
:process 772}

Note that this read also has message 86 at offset 76,
not 78. All pollers agreed on this too!
However, on key 11, pollers did in fact disagree on
which messages were at what index. Process 582
wrote message 373 at offset 242. Two hundred mil-
liseconds later, process 438 polled key 11, and saw 373
at offset 242. 9.7 seconds later, process 486 polled key
11, and this time saw 373 reordered to offset 244: off-
set 242 now had value 371.

{:type :ok,
:f :send,
:value ([:send 11 [242 373]]),
:time 258055827281,
:process 582}

{:type :ok,
:f :poll,
:value ({11 (...

[240 371]
[241 372]
[242 373]
[243 374]
[244 375]

9



...)}),
:time 258202815546,
:process 438}

{:type :ok,
:f :poll,
:value ({11 (...

[242 371]
[243 372]
[244 373]
...)}),

:time 267966157000,
:process 486}

If we look at the surrounding neighborhood of send
and poll operations (again with time flowing top to bot-
tom, and offsets from left to right) we can see this par-
ticular disagreement between pollers was a part of a
larger, more complex reordering:

Messages 371 through 379 were shifted two offsets
later in the log, even after many of their original sent
offsets were visible to pollers. This resulted in order in-
versions: both senders and some pollers thought mes-
sage 376 preceded 378, but later polls showed 378 be-
fore 376—before 378 was relocated after 376 again.

In our tests Redpanda 21.10.1 and 21.10.2 would hap-
pily reorder dozens, even hundreds of messages in re-
sponse to node and network faults.

This issue was likely due to an error in Redpanda’s im-
plementation of the Raft consensus algorithm, which
allowed the Redpanda state machine to apply log en-
tries before they were known to be committed. These
uncommitted entries could change if a new leader
came to power, allowing a short window of split-brain.
This issue (#3003) was fixed in 21.10.3 by waiting for
the commit pointer to advance. We did not observe
inconsistent offsets after 21.10.3.

3.6 Lost/Stale Messages (#6)

In our testing of 21.10.1, 21.10.2, 21.10.3, and 21.11.2,
a variety of faults could cause successfully acknowl-
edged messages to fail to appear in any client’s polls.
These missing messages were always at the end of a
partition—we might observe offsets 0 through 5, but
offsets 6, 7, … would never appear in any poll.

Because consumer.poll() in Kafka and Redpanda is
allowed to fall arbitrarily far behind producers, it was
not possible to tell whether these missing messages
were permanently lost or simply delayed. However,
we made significant efforts to recover stale messages.
At the end of each test, we ended all network parti-
tions, unpaused any paused nodes, and restarted any
crashed ones. We then tore down and recreated every
client to ensure that no client was somehow “stuck.”
We assigned each new client the full list of topic-
partitions that had been written or read during the
test, and called poll repeatedly until it had observed
every offset we’d previously seen. In case clients were
stuck again, we repeated this teardown-and-poll pro-
cess for every client every ten seconds, and extended
this final polling process for up to an hour. Every node
had at least one client bootstrapped from that node,
to ensure that nodes with stale metadata couldn’t pre-
vent reads.

Nevertheless, we were consistently able to drive clus-
ters into states where acknowledged messages were
never seen by any client. For instance, this test run
of version 21.11.2 with network partitions and mem-
bership changes caused the loss (or indefinite delay)
of 9,988 out of 11,225 successfully acknowledged mes-
sages. Every single key (topic-partition) lost some
messages. This stacked plot shows the number of un-
seen messages over time, with each key’s messages in
a different color.

This problem occurred despite using the
strongest safety settings. Producers used
acks=all and retries=0. Consumers used
auto_offset_reset=earliest and read messages us-
ing assign, rather than subscribe (to rule out is-
sues in the consumer group subsystem). We also
increased redpanda.default_topic_replication to
3, rather than the default of 1, to make sure Red-
panda’s internal topics were fault-tolerant. We set
redpanda.auto_create_topics_enabled = false to
ensure Redpanda was not automatically creating
under-replicated topics which would be more suscep-
tible to data loss.

A number of faults could cause lost/stale messages.
We reproduced this issue with process kills alone in

10

https://raft.github.io/
https://github.com/vectorizedio/redpanda/pull/3003
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20211221T153711.000Z.zip


21.10.1, with membership changes and network par-
titions combined in 21.11.2, and with process pauses
alone (as well as process crashes with membership
changes) in development builds circa January 19th,
2022.

Redpanda reports that copies of missing messages
could still be found in on-disk data files, but we don’t
know why those messages were never delivered to con-
sumers. Redpanda is still investigating.

3.7 Aborted Read With NotLeaderOrFollower
(KAFKA-13574)

In rare cases involving membership changes and pro-
cess crashes, development builds of Redpanda circa
December 30, 2021 exhibited what appeared to be
aborted reads. For instance, this test attempted
to send message 586 to key 5, which failed with a
NotLeaderOrFollowerException. However, 586 ap-
peared consistently in later polls of key 5:

{:type :ok,
:f :poll,
:value [[:poll {5 [...

[359 585]
[360 586]
[361 587]
...]}]],

:time 792033983678,
:process 1870}

Jepsen and Redpanda initially suspected that
NotLeaderOrFollowerException was a definite failure
code, which would make this a case of aborted read.
The Kafka documentation seemed to suggest that this
error meant a request was not processed:

Broker returns this error if a request could
not be processed because the broker is not
the leader or follower for a topic partition.
This could be a transient exception during
leader elections and reassignments. For
Produce and other requests which are in-
tended only for the leader, this exception
indicates that the broker is not the current
leader.

However, Kafka engineers in KAFKA-13574 informed
us that NotLeaderOrFollowerException is in fact in-
definite, and may signify a successful send operation.
We asked the Kafka team if this was documented any-
where, but did not receive a response.

3.8 Write Cycles (#8)

The KafkaProducer documentation offers a
straightforward example of transaction struc-
ture: one calls producer.beginTransaction(),
performs one or more producer.send() calls,
then calls producer.commitTransaction() to
commit. Prior to commit, one can also call
producer.sendOffsetsToTransaction(...), which

couples specific read offsets into the transaction for
exactly-once semantics.

In practice, using transactions correctly is somewhat
more intricate than these examples suggest. Calling
abortTransaction appears to be mandatory in certain
conditions, and illegal in others. Producers must be
torn down and recreated from scratch in many (but not
all!) cases. Discussions with Redpanda engineers re-
sulted in a transaction with roughly 16 separate error-
handling paths, depending on whether it was neces-
sary to close and reopen the producer, whether an er-
ror occurred prior to or during commit, whether the
abort itself was successful or crashed, and so on.

If one interprets producer.send as appending a record
to the end of a particular topic-partition, it seems
clear that transactional writes in Redpanda are not
isolated from one another. Even in healthy clusters,
we routinely observed transactions insert messages
into the middle of other transactions’ writes. This two-
minute test run on a January 6th development build
performed 1,594 transactions which sent a message,
and contained 163 clusters of transactions whose mes-
sages interleaved with one another. For example:

send 10 [772 298]

poll {8 [[1857 669]]} nil send 10 [771 296] send 8 [1860 670] send 10 [774 297]

wwww

The bottom transaction here sent 296 to key 10, at off-
set 771. However, the top transaction snuck in and
wrote 298 at offset 772. The bottom transaction then
wrote 297 at offset 774. This behavior occurred in ev-
ery version of Redpanda we tested.

Does this constitute an isolation violation? It is cer-
tainly not equivalent to the behavior one would ex-
pect were these transactions performed sequentially.
A Confluent blog post on semantics describes offsets
as monotonically increasing, which might suggest we
can infer write-write dependencies from offsets:

An offset is a special, monotonically in-
creasing number that denominates the po-
sition of a certain record in the partition
it is in. It provides a natural ordering of
records—you know that the record with off-
set 100 came after the record with offset 99.

And Kafka’s Main Concepts and Terminology docu-
mentation specifically refers to publishing as an ap-
pend to a topic:

When a new event is published to a topic,
it is actually appended to one of the topic’s
partitions…. Kafka guarantees that any
consumer of a given topic-partition will al-
ways read that partition’s events in exactly
the same order as they were written.

This theme repeats in Kafka and Confluence documen-
tation introducing core Kafka concepts:

11

http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20211230T183546.000Z.zip
https://kafka.apache.org/30/javadoc/org/apache/kafka/common/errors/NotLeaderOrFollowerException.html
https://issues.apache.org/jira/browse/KAFKA-13574
https://kafka.apache.org/30/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/30/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html#sendOffsetsToTransaction(java.util.Map,org.apache.kafka.clients.consumer.ConsumerGroupMetadata)
https://www.confluent.io/blog/simplified-robust-exactly-one-semantics-in-kafka-2-5/
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L308-L533
https://github.com/jepsen-io/redpanda/blob/516655ef0d5e954a77d7297b296fd1a531f30465/src/jepsen/redpanda/workload/queue.clj#L308-L533
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20220113T144155.000-0500.zip
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20220113T144155.000-0500.zip
https://www.confluent.io/blog/apache-kafka-data-access-semantics-consumers-and-membership/
https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://docs.confluent.io/5.5.1/kafka/introduction.html


Each partition is an ordered, immutable
sequence of records that is continually ap-
pended to a structured commit log. The
records in the partitions are each assigned
a sequential ID number called the offset,
that uniquely identifies each record within
the partition.

If we do interpret a Kafka partition as an “object” in
the transactional sense, and calls to send as appends
to that partition, then allowing transactions to inter-
leave their writes is analogous to phenomenon G0: a
write cycle. Per Adya, Liskov, & O’Neil, G0 ought to be
disallowed under isolation level read uncommitted—
not to mention read committed and higher. Moreover,
the Confluence Wiki explicitly states that this behav-
ior ought to be forbidden. Yet with Redpanda, both
read uncommitted and read committed isolation lev-
els allowed writes to interleave.
On the other hand, Redpanda argues that every in-
dividual offset in a partition is a separate object, and
inferring write-write dependencies in this way is a cat-
egory error. Under this interpretation, producer.send
does not mean “append a message to the end of a par-
tition”. Instead, send means “set some unspecified off-
set (higher than the offset I just wrote to this parti-
tion, if any) to the given message.” There are no such
things as write-write dependencies in this interpreta-
tion, because every offset has only a single value; no
transaction ever overwrites another. The write depen-
dency graph is trivially empty, and no G0 anomalies
exist. This also appears consistent with the behavior
implied by the Exactly Once Delivery Google Doc.
Both of these views seem defensible. We do not
know which interpretation Kafka & Redpanda users
expect; the official Kafka documentation declines to
specify, and ancillary documents contradict one an-
other. Regardless of which interpretation one chooses,
both Kafka 3.0.0 and Redpanda exhibit similar write-
interleaving behavior. This behavior is a conse-
quence of the transactional protocol itself, rather
than something specific to Redpanda’s implementa-
tion. We report G0 here not because it is definitively
incorrect behavior, but because it could affect safety
for some users, and the current behavior is under-
documented.
A bit of good news: while producer offsets frequently
contained gaps due to other transactions inserting
during their execution, producer offsets remained
monotonic in our transactional tests.8

3.9 Aborted Reads & Circular Information Flow
(#3036)

In 21.10.1, transactions routinely exhibited
aborted reads and circular information flow un-
der normal operation. For instance, this three-
minute run without any faults, using acks=all

and isolation.level=read_committed, still re-
sulted in seven cases where a failed transac-
tion’s writes were visible to pollers. Here is a
write of 567 to key 9, which failed during the
producer.sendOffsetsToTransaction call prior to
commit:

{:type :fail,
:f :txn,
:value [[:poll]

[:poll]
[:send 9 567]
[:poll]],

:time 30017247775,
:process 4,
:error [:add-offsets

"Unexpected error in
AddOffsetsToTxnResponse: The server
experienced an unexpected error when
processing the request."]}

And yet message 567 was visible to a concurrent poll
operation:

{:type :ok,
:f :poll,
:value [[:poll {9 [[1477 567]]}]],
:time 29973974218,
:process 6}

567 was not visible to later readers. We frequently
observed messages which were visible to some pollers
and then later disappeared, both from known failed
and indefinite transactions. This anomaly is G1a
(aborted read), and is expressly prohibited under both
ANSI and Kafka descriptions of read committed.

Moreover, 21.10.1 frequently exhibited G1c (circular
information flow), even when we took into account only
write-read, rather than write-write, dependencies. In
that same test run we found 35 clusters of transac-
tions where each transaction’s writes were visible to
every other transaction. For instance, consider this
pair of transactions:

send 18 [162 59] poll {} nil send 19 [121 46] poll {19 [[119 45]]} nil

send 19 [119 45] poll {} nil poll {18 [[162 59]]} nil

wr wr

The top transaction sent message 59 to key 18, at off-
set 162. That same offset and value were returned to
a poll by the bottom transaction. However, the bottom
transaction sent message 45 at offset 119 to key 19—
and that message was polled by the top transaction.
At least one of these transactions must have read a
value from the other before it was committed. Since
both transactions committed, this does not constitute
G1a (aborted read). This type of G1c cycle shows why

8This is not true for non-transactional workloads, where the documentation is clear: internal retries allow two send calls on a single
producer to obtain offsets in either increasing or decreasing order.

9What of G1b, intermediate read? There appears to be no guarantee that consumers in Kafka & Redpanda will observe all writes
from a transaction together. One could have a transaction write to partitions 𝑎 and 𝑏, and a consumer assigned to both partitions
could observe the write to 𝑎 but not 𝑏 or vice versa. We suspect G1b occurs normally, but have not experimentally confirmed this.

12

http://pmg.csail.mit.edu/papers/icde00.pdf
https://cwiki.apache.org/confluence/display/KAFKA/Idempotent+Producer
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20220106T105650.000-0500.zip
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20220106T105650.000-0500.zip
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20220106T105650.000-0500.zip
https://kafka.apache.org/documentation/#producerconfigs_retries


Adya’s formalization of read committed prohibits G1a
and G1c.9

Redpanda had already identified this problem before
Jepsen began testing transactions, and addressed it
in #3036. In short, an off-by-one error allowed the
last stable offset visible to pollers to advance just
past committed messages. In addition, #3232 al-
lowed Redpanda to accidentally abort more transac-
tions than necessary. These fixes were released in
version 21.10.2, and we did not observe aborted reads
or wr-only circular information flow in higher ver-
sions.10

3.10 Internal Non-Monotonic Polls (#10)

Reads introduce additional complexity into the
Kafka/Redpanda transactional model. Kafka has sep-
arate clients for reading and writing data: consumers
and producers are separate objects. There is no su-
pervening client which provides transactions across
both.11 Instead, transactional methods are only avail-
able on the producer, and callers couple the highest off-
sets read from their consumer into the transaction by
calling producer.sendOffsetsToTransaction.12 For
example:

consumer.subscribe(["some-topic"]);
producer.beginTransaction();
records1 = consumer.poll();
records2 = consumer.poll();
producer.send(record);
offsets = <highest offsets observed in records1

and records2, each plus one>;
producer.sendOffsetsToTransaction(

offsets,
"some-consumer-group"

);
producer.commitTransaction();

What exactly are the ordering semantics of these
reads?

One might expect that consumers poll offsets contigu-
ously within a transaction, and do not skip over any
messages. A skip within a transaction would be prob-
lematic because Kafka transactions do not commit
each individual offset consumed, but rather the maxi-
mum offset consumed. Happily, in 21.11.2 and higher,
we never observed skips within transactions.13

One might also expect that consumers poll strictly
monotonic increasing offsets, so that they process mes-
sages both in order and at most once. Unfortunately,
this does not appear to be true. Within a single trans-
action, a single consumer using subscribe could qui-
etly rewind its position and poll records whose offsets
fell prior to those they had just polled—in most cases

consuming the same records multiple times. This hap-
pened regularly in healthy clusters in all versions of
Redpanda we tested. Take this run of a development
build from January 6, 2022, with no faults. It con-
tained the following transaction:

[[:poll {25 [[924 359]
[925 360]
[928 361]
[931 364]
[935 365]
[937 362]
[938 363]
[941 370]
[944 366]
[945 367]
[947 372]
[949 373]
[952 374]
[957 368]
[958 375]
[959 369]
[963 376]]}]

[:poll {}]
[:poll {25 [[935 365]

[937 362]
[938 363]
[941 370]
[944 366]
[945 367]
[947 372]
[949 373]
[952 374]
[957 368]
[958 375]
[959 369]
[963 376]
[964 371]
[968 378]]}]

[:send 25 [973 377]]]

This transaction executed three consecutive calls to
consumer.poll with a single consumer, which had ear-
lier been subscribed to the topic containing key 25.
The first poll started with message 359 at offset 924,
and continued through to offset 963. The second re-
turned nothing. The third jumped backwards twelve
messages, and returned offsets 935 to 968. Other
transactions in this history jumped back to offsets com-
pletely before their previous call to poll.

This behavior seems dangerous. If we were trying to
achieve “exactly-once” semantics, this single transac-
tion would actually process some (but not all!) of its
records twice. It might also violate ordering relation-
ships between messages—if we processed the records
in records1, then records2, we would process offset
935 immediately after 963. If message processing

10As previously noted, there is arguably no write isolation in Kafka transactions, which means that transactions routinely exhibit
G1c cycles involving ww and wr edges: for instance, where 𝑇1 sends a message before 𝑇2, and goes on to read a message sent by
𝑇2. Like G0, this behavior is also prohibited under Adya et al’s formalization of read committed.

11The Kafka Streams library might provide this functionality, but we have not explored it.
12The Kafka client actually offers two flavors of sendOffsetsToTransaction. The one which Redpanda supports is deprecated; the

one which Kafka recommends as of their 3.0.0 release throws UnsupportedVersionException on every invocation.
13We did routinely observe skips between two successive transactions executed by the same poller when using subscribe. This makes

sense—consumers in a consumer group trade off consuming offsets, so no single consumer should expect to see every record.

13

https://github.com/vectorizedio/redpanda/pull/3036
https://github.com/vectorizedio/redpanda/pull/3232
https://github.com/jepsen-io/redpanda/blob/e592e489a797cdbe9bb22b994c44d0d6dc11e0f4/src/jepsen/redpanda/workload/queue.clj#L274-L307
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20220113T174332.000-0500.zip
https://kafka.apache.org/30/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html#sendOffsetsToTransaction(java.util.Map,java.lang.String)


were non-commutative, this could lead to unexpected
results.
Is this behavior expected? The Kafka consumer doc-
umentation seems to suggest that consumers should
return sequentially increasing offsets:

The position of the consumer gives the off-
set of the next record that will be given out.
It will be one larger than the highest off-
set the consumer has seen in that parti-
tion. It automatically advances every time
the consumer receives messages in a call to
poll(Duration).

And yet this is clearly not what happens! This is espe-
cially vexing because all the state required to prevent
this kind of non-monotonic behavior is already present
in the consumer. The consumer knows that its previ-
ous poll returned offset 963. It can therefore enforce
that its next poll returns offset 964 or higher!
As it turns out internal non-monotonic polls are a con-
sequence of of consumer group rebalance events, where
the Kafka client and Redpanda coordinate to auto-
matically reassign partitions among subscribers. A
more thorough investigation revealed that consumers
were having their partitions automatically reassigned
within the scope of a transaction, causing those con-
sumers to return to earlier positions in the log.
To avoid this hazard users must provide a
ConsumerRebalanceListener, which receives call-
backs indicating changes in partition assignment.
When a rebalance event occurs, the client can abort
the current transaction—preventing it from observing
messages out-of-order.

3.11 Aborted Read With InvalidTxnState
(#3616-a)

We frequently observed transactions which appeared
to fail, but whose writes were visible to later reads.
With process pauses, crashes, or network parti-
tions, versions 21.10.1, 21.11.2, and development
builds in early January 2022 would reliably throw
InvalidTxnStateException when committing transac-
tions, but the writes performed by those transactions
might later be visible. In this test run, for instance,
we encountered 66 transactions like so:

{:type :fail,
:f :txn,
:value [[:send 7 [97 32]]

[:send 6 [33 11]]
[:poll {9 [[297 120]]}]],

:time 68499617337,
:process 9,
:end-process? true,
:error
{:type :abort,
:abort-ok? false,
:tried-commit? true,
:definite? true,
:body-error "org.apache.kafka.common.errors.

InvalidTxnStateException: The

producer attempted a
transactional operation in an
invalid state.",

:abort-error "org.apache.kafka.common.
KafkaException: Cannot
execute transactional method
because we are in an error
state"}}

This transaction attempted to send message 32 to key
7, but when it called producer.commitTransaction(),
received an InvalidTxnStateException. It then at-
tempted to abort the transaction, but the abort call
failed because the producer was in an error state. Mes-
sage 32 then appeared in later reads:

{:type :ok,
:f :txn,
:value [...

[:poll
{7 [[85 28]

[87 29]
[91 30]
[94 31]
[97 32]],

9 [[297 120]
[301 121]
[302 122]]}]],

:time 69250120511,
:process 10}

“Attempted in an invalid state” sounds like a
definite failure: if the state were invalid be-
fore the attempt to commit, how could it pos-
sibly have succeeded? The documentation for
InvalidTxnStateException says nothing about its
meaning, and the commitTransaction documentation
does not mention it in their list of possible exceptions.
We asked the Kafka team about this error code, but
did not receive a response.

This turned out to be a bug in Redpanda’s transac-
tion path. A client would commit a transaction, but
the transaction coordinator crashed just prior to ac-
knowledging that transaction to the client. The client
would time out and attempt to retry the commit. On
receiving that second commit request for an already
committed transaction, the server would respond with
invalid_txn_state—which the client might interpret
as a failure. Unfortunately, the Kafka transactional
protocol does not include a unique identifier for trans-
actions, which makes it difficult to tell which transac-
tion is being committed when a coordinator fails. Red-
panda cannot tell, in general, whether a retried com-
mit request should succeed or fail.

This issue was addressed via a suite of transaction
improvements in #3616. Redpanda now returns an
unknown_server_error, which more clearly signals
the transaction’s indeterminate state. In development
builds after January 21, 2022, we no longer observed
aborted reads with transactions. This issue was fixed
in 21.11.15.

14

https://kafka.apache.org/30/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/30/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/30/javadoc/org/apache/kafka/clients/consumer/ConsumerRebalanceListener.html
http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20220112T170943.000-0500.zip
https://kafka.apache.org/30/javadoc/org/apache/kafka/common/errors/InvalidTxnStateException.html
https://kafka.apache.org/30/javadoc/org/apache/kafka/common/errors/InvalidTxnStateException.html
https://kafka.apache.org/30/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html#commitTransaction()
https://issues.apache.org/jira/browse/KAFKA-13574?
https://github.com/vectorizedio/redpanda/pull/3616
https://github.com/vectorizedio/redpanda/pull/3616/commits/b2f952a714d2db53c5ece362463b20969d1378ea
https://github.com/vectorizedio/redpanda/pull/3616/commits/b2f952a714d2db53c5ece362463b20969d1378ea


3.12 Lost Transactional Writes (#3616-b)

In 21.11.2, as well as development builds circa Jan-
uary 6th and 19th, 2022, we observed occasional cases
in healthy clusters where writes performed by a suc-
cessfully committed transaction would vanish, never
to be seen again. In this test run, the following single-
write transaction successfully committed:

{:type :ok,
:f :send,
:value [[:send 22 [1903 689]]],
:time 823319861300,
:process 215}

And yet offset 1903 and value 689 never appeared in
any poll. The immediately following poll skipped right
over it. So too did every final poll, which used assign
and seekToBeginning to attempt to read the entire par-
tition in order. All observed something like:

{:type :ok,
:f :txn,
:value ([:poll {22 [...

[1895 682]
[1898 683]
; No 1903!
[1908 688]

[1911 690]
[1912 691]
[1913 692]
...]}]),

:time 824502875814,
:process 201}

Like the transactional aborted reads discussed just
prior, this issue was addressed as a part of a pack-
age of transaction protocol improvements in #3616.
When applying log operations to the local state, a Red-
panda leader would check to make sure that they were
still the most current leader, and if that check suc-
ceeded, go on to perform multiple state transitions.
However, the node could apply an action, lose leader-
ship, regain leadership, then go on to apply another ac-
tion—falsely assuming that it had been the sole leader
the entire time. This could allow state machine op-
erations to interleave incorrectly. Redpanda suspects
that this caused successfully committed transactions
to be lost.

The problem was resolved in development builds circa
January 21, 2022. Redpanda now reads the current
term prior to performing multiple state machine ac-
tions, and ensures that term is still current when ap-
plying each action. The fix was released in 21.11.15.

№ Summary Event Required Fixed In
1 Duplicate writes by default Pause, crash, or partition 22.1.1*
3039 Duplicate writes with idempotence Pause, crash, or partition 21.10.3
3335 Assert failure deallocating partitions Membership change Unresolved
3336 Assert failure involving partition IDs Crash 22.1.1*
3003 Inconsistent offsets Crash or partition 21.10.3
6 Lost/stale messages Pause, crash, or partition Unresolved
KAFKA-13574 Aborted read with NotLeaderOrFollower Membership change & pause Unresolved
8 Write cycles None Unresolved
3036 Aborted read & circular information flow None 21.10.2
10 Internal non-monotonic polls None Unresolved
3616-a Aborted read with InvalidTxnState Pause or crash 21.11.15
3616-b Lost transactional writes None 21.11.15

* 22.1.1 is an upcoming release

4 Discussion

We identified ten issues (seven safety, three live-
ness) in Redpanda 21.10.1 through 21.11.2, including
crashes, duplicated messages, non-monotonic polls,
aborted reads, circular information flow, inconsistent
offsets, and lost or delayed writes. Some of these is-
sues, like aborted reads and lost writes, occurred in
healthy clusters. Others required only minor faults:
a process pausing for a few seconds could cause data
loss. Both non-transactional and transactional work-
loads exhibited safety violations.

We also identified two safety behaviors which
might be surprising, but are not necessarily
incorrect. The first is an ambiguous error,
NotLeaderOrFollowerException, which might suggest

to users that a given write did not succeed when, in
fact, it did. The second is that transactions provide no
write isolation, allowing G0 (write cycle), G1b (inter-
mediate read), and G1c (circular information flow)
with write-write edges. G1c with only write-read
edges is prevented in 21.10.2 and higher. Documenta-
tion disagrees as to whether this should be prohibited
or allowed.

The Redpanda team already had an extensive test
suite— including fault injection—prior to our collab-
oration. Their work found several serious issues in-
cluding duplicate writes (#3039), inconsistent offsets
(#3003), and aborted reads/circular information flow
(#3036) before Jepsen encountered them. Redpanda
has also extended their test suite to reproduce new is-
sues Jepsen identified.

15

http://jepsen.io.s3.amazonaws.com/analyses/redpanda-21.10.1/20220113T185428.000-0500.zip
https://github.com/vectorizedio/redpanda/pull/3616
https://github.com/vectorizedio/redpanda/pull/3616/commits/4293c2e55c7c027ed8d23b0ba879f6cd51f8d5b9
https://github.com/vectorizedio/redpanda/pull/3616/commits/4293c2e55c7c027ed8d23b0ba879f6cd51f8d5b9
https://github.com/vectorizedio/redpanda/pull/3616/commits/4293c2e55c7c027ed8d23b0ba879f6cd51f8d5b9
https://github.com/vectorizedio/redpanda/pull/3039
https://github.com/vectorizedio/redpanda/issues/3335
https://github.com/vectorizedio/redpanda/issues/3336
https://github.com/vectorizedio/redpanda/pull/3003
https://issues.apache.org/jira/browse/KAFKA-13574
https://github.com/vectorizedio/redpanda/pull/3036
https://github.com/vectorizedio/redpanda/issues/3616
https://github.com/vectorizedio/redpanda/issues/3616
https://cwiki.apache.org/confluence/display/KAFKA/Transactional+Messaging+in+Kafka
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit


The most frequent safety issues we found were re-
solved in 21.10.3, but some problems, including
aborted reads and lost writes, remained extant in
21.11.2. Aborted reads (#3616-a) and lost transac-
tional writes (#3616-b) were fixed in the just-released
21.11.15. Fixes for duplicate writes by default (#1) and
assert failures (#3336) are scheduled for version 22.1.1.
We recommend users upgrade to 21.11.15 as soon as
feasible, and 22.1.1 once available, to reduce the prob-
ability of safety errors.

Two issues remain to be investigated and patched:
a crash when deallocating partitions (#3335) and
lost/stale messages (#6). Aborted reads with
NotLeaderOrFollower (#KAFKA-13574), write cycles
(#8), and internal non-monotonic polls (#10) can all
be addressed through documentation, but these docs
have not yet been written.

We did not observe any safety issues related to clock
skew, which makes sense: Redpanda uses Raft exten-
sively for state machine replication, and does not rely
on wall-clock timestamps for correctness. While the
Kafka protocol does involve heartbeats and timeouts
for consumer liveness, it uses logical epochs and se-
quence numbers for safety.

Jepsen found Redpanda straightforward to install and
operate during testing. The rpk administrative tool
made configuration simple, although we did have a mi-
nor issue with rpk altering config file ownership and
making the config file unreadable to Redpanda itself.
Node startup and cluster join were fast and robust.
Clusters recovered in a few seconds from crashes and
partitions. With minor surprises (namely, idempo-
tence and transactions), the Java Kafka client worked
seamlessly out of the box. Membership changes in-
volved undocumented HTTP APIs (and new ones had
to be built in order to perform membership changes
safely) but Jepsen is confident that this process can
be streamlined and integrated into rpk.

As always, we note that Jepsen takes an experimental
approach to safety verification: we can prove the pres-
ence of bugs, but not their absence. While we try hard
to find problems, we cannot prove the correctness of
any distributed system.

4.1 Mild Surprises

During our testing we encountered a number of mi-
nor surprises in the Kafka Java client and Redpanda
proper. We’d like to discuss these briefly, in the hopes
that they might help other users.

First, network clients typically throw either when con-
necting to or reading from nodes which are unavail-
able. A KafkaConsumer, by contrast, will happily con-
nect to a jar of applesauce14 and return successful,
empty result sets for every call to consumer.poll. This
makes it surprisingly difficult to tell the difference be-
tween “everything is fine and I’m up to date” versus
“the cluster is on fire”, and led to significant confusion
in our tests.

Consumers can use commitSync to inform Redpanda
(or Kafka, as the case may be) that they have pro-
cessed messages up to some offset. When producers
fail and restart, they can pick up at the committed
offset to avoid re-processing too many records. One
might assume that the committed offset for a given
topic-partition is monotonic, but this is not true. Com-
mitted offsets are allowed to go backwards, effectively
un-committing committed messages. This could oc-
cur if a commit network message is delayed due to
a process pause or network hiccup. In practice this
seems unlikely to cause safety issues: users should
already assume that in most cases, messages in
Kafka/Redpanda will be processed multiple times.

Kafka and Redpanda can automatically create top-
ics when producers send or consumers poll. By
default, the replication factor for these topics in
Redpanda is 1, which means that if a client hap-
pens to interact with a topic prior to its official cre-
ation, and auto-creation is enabled on the client and
server, one might end up with a topic with essen-
tially no fault-tolerance. Users can increase the repli-
cation factor for these newly created topics by set-
ting redpanda.default_topic_replication to three
or higher. You can also disable topic autocreation
by setting redpanda.auto_create_topics_enabled =
false.

4.2 Non Fault-Tolerant Defaults

Even in production mode, Redpanda did not provide
fault tolerance by default for its transaction coordi-
nator, ID allocator, and internal metadata. This al-
lowed Redpanda to run on a single-node installation
out of the box, but could lead to safety issues if a sin-
gle node fails. We recommend users with multi-node
clusters set redpanda.default_topic_replications,
redpanda.id_allocator_replication, and
redpanda.transaction_coordinator_replication to
at least 3, in order to survive the failure of any indi-
vidual node. Redpanda plans to address this in future
releases. This requirement remains undocumented.

Redpanda still does not enable idempotence sup-
port by default. This could cause clients which
default to idempotence to silently duplicate mes-
sages. We recommend Redpanda users set
redpanda.enable_idempotence = true to avoid this
problem. Redpanda plans to enable idempotence by
default in 22.1.1.

4.3 Transaction Isolation

Users of Kafka & Redpanda transactions should be
aware that transactions may, depending on one’s inter-
pretation of write conflicts for send operations, allow
G0 (write cycle) and G1c (circular information flow) by
design. Two transactions may interleave their writes
together. Transaction 𝑇1 can write a message prior to
a write by 𝑇2, then go on to read 𝑇2’s writes before com-
mitting. We suspect, but have not demonstrated, that

14Assuming the applesauce jar speaks TCP/IP.

16

https://github.com/vectorizedio/redpanda/blob/8408b7223ff73f3b8187560e0ad96653e746ec63/src/v/config/configuration.cc#L371-L388
https://github.com/vectorizedio/redpanda/blob/8408b7223ff73f3b8187560e0ad96653e746ec63/src/v/config/configuration.cc#L371-L388
https://github.com/vectorizedio/redpanda/issues/3629
https://github.com/vectorizedio/redpanda/issues/3629
https://github.com/vectorizedio/redpanda/blob/8408b7223ff73f3b8187560e0ad96653e746ec63/src/v/config/configuration.cc#L329-L334
https://github.com/vectorizedio/redpanda/blob/8408b7223ff73f3b8187560e0ad96653e746ec63/src/v/config/configuration.cc#L329-L334


G1b (intermediate read) is also allowed by the transac-
tion protocol which Redpanda and Kafka share. Users
should expect these behaviors in their transactions so
long as the Kafka transaction protocol remains un-
changed. Since the official Kafka documentation de-
clines to specify transactional write isolation, and an-
cillary documentation makes contradictory claims, it’s
hard to say what the “correct” behavior ought to be.

In 21.10.1, transactions allowed G1c cycles comprised
entirely of write-read edges: 𝑇1 could write something
which 𝑇2 read, and 𝑇2 could write something which
𝑇1 read. This behavior was a bug, and was fixed in
21.10.2.

We identified multiple cases of G1a (aborted read)
in Redpanda transactions, up to and including ver-
sion 21.11.2. These too were bugs, but all in-
stances of G1a we identified should be fixed as of
Redpanda 21.11.15. We believe users of Redpanda
21.11.15 who use transactions with isolation_level
= read_committed should not observe G1a or G1c cy-
cles comprised entirely of write-read dependencies.
Running with isolation_level = read_uncommitted
will likely still allow both phenomena.

4.4 Exactly-Once Semantics

We never attempted to check exactly-once process-
ing across multiple clients, because individual clients
would routinely double-process messages in our
tests—even within a single transaction. This could be
caused by the fact that calls to consumer.poll were of-
ten non-monotonic, going back to re-read some or all
messages previously observed in a single transaction.
It could also be because our test broke some poorly doc-
umented rules of Kafka transactions.

We initially patterned our queue transactional work-
load after Kafka’s example code for exactly-once trans-
actional processing, but intended to measure only
atomicity and isolation, rather than exactly-once pro-
cessing. Consequently we made two changes which
might invalidate global exactly-once semantics: we
performed multiple calls to poll in a single transac-
tion, and we allowed multiple transactional IDs to con-
sume from a single partition.

Since the Kafka transactions design document spec-
ifies that a single transaction may perform multiple
requests over a long phase, we replaced the example’s
single call to consumer.poll with a short, random se-
ries of polls and sends. Performing multiple reads is a
typical pattern in other transaction systems, and we
found nothing in Kafka nor Redpanda’s documenta-
tion which says this is illegal.

Where the Kafka demo used GROUP_INSTANCE_ID_CONFIG
to establish a static mapping of consumers to par-
titions, we used a single consumer group with au-
tomatic rebalancing. This allowed two clients with
different transactional IDs to consume from the same
partition. Neither the official documentation nor the
Javadocs discuss the semantics of multiple transac-
tional IDs—though they do suggest IDs be “unique to

each producer instance.” A careful reading of a Con-
fluent blog post suggests this should have allowed du-
plicate processing of messages across different trans-
actional IDs, but says nothing about behavior within
a single transaction or transactional ID. The Kafka
transactions design doc indicates that in the absence
of transactional IDs, each producer still “enjoys idem-
potent semantics and transactional semantics within
a single session,” but declines to say whether those
guarantees hold when transactional IDs are provided
but differ.

Redpanda believes these choices essentially invalidate
our transactional results: performing multiple polls
per transaction and allowing multiple transactional
IDs to consume from the same partition means that we
cannot expect safety even within a single transaction—
let alone two transactions performed by clients with
the same transactional ID. We cannot locate a source
for this claim in the Kafka or Redpanda literature; if
true, it may be undocumented.

Instead, Redpanda suggested that obtaining safe
transactional semantics requires a more complex
dance in which one generates producers with specif-
ically chosen transactional IDs based on source par-
titions. Each producer reads saved offsets for the
partitions they intend to interact with, writes them
back in an otherwise empty transaction to ensure con-
current producers haven’t overwritten those offsets,
seeks to those offsets, and then performs transactions
as normal. Neither this approach nor this particu-
lar code were referenced in any public documentation,
and Jepsen is unsure how users would have learned
to do this on their own. We did not have time to imple-
ment this pattern in our test suite, but other Kafka
and Redpanda users might find it helpful.

All of this is complicated by official documentation
which is absent, incomplete, vague, byzantine, or sim-
ply wrong. Vendor and third-party blog posts can be
downright confusing. Users must piece together all
of these resources, which often phrase behavior not
in terms of application-level invariants but via the
implementation details of an interlocking collection
of distributed locking, idempotence, atomicity, retry,
and crash-recovery mechanisms split across readers
and writers. In short, Kafka and Redpanda offer less
of a transaction system in the sense that database
users are accustomed to, and more of a choose-your-
own-adventure book in which half the pages are miss-
ing, critical plot points are scrawled in the margins by
other readers, and many paths lead to silent invariant
violations.

We stress that this is not Redpanda’s fault: confor-
mance with the Kafka wire protocol significantly con-
strains what Redpanda can offer users. Nevertheless,
better documentation would be a blessing.

4.5 Membership Changes

As of February 1, 2022, Redpanda documentation
did not mention how to remove nodes from the clus-
ter. Instead Redpanda clients learned how to remove

17

https://kafka.apache.org/30/documentation.html
https://cwiki.apache.org/confluence/display/KAFKA/Idempotent+Producer
https://cwiki.apache.org/confluence/display/KAFKA/Idempotent+Producer
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://github.com/apache/kafka/blob/7d9b9847f184ec72c4c80c046edc408789dcc066/examples/src/main/java/kafka/examples/ExactlyOnceMessageProcessor.java#L79-L141
https://github.com/apache/kafka/blob/7d9b9847f184ec72c4c80c046edc408789dcc066/examples/src/main/java/kafka/examples/ExactlyOnceMessageProcessor.java#L79-L141
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit#heading=h.k3ikkiat5ahm
https://kafka.apache.org/30/documentation.html#producerconfigs_transactional.id
https://javadoc.io/static/org.apache.kafka/kafka-clients/3.0.0/index.html?org/apache/kafka/clients/producer/KafkaProducer.html
https://www.confluent.io/blog/transactions-apache-kafka/
https://www.confluent.io/blog/transactions-apache-kafka/
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit
https://github.com/vectorizedio/chaos/blob/ef02d93364f55ea01b0cec13f564b547e2bdd99c/workloads/tx-subscribe/src/main/java/io/vectorized/Workload.java#L448
https://github.com/vectorizedio/chaos/blob/ef02d93364f55ea01b0cec13f564b547e2bdd99c/workloads/tx-subscribe/src/main/java/io/vectorized/Workload.java#L448
https://docs.redpanda.com/
https://kafka.apache.org/30/documentation.html#producerconfigs_transactional.id
https://javadoc.io/static/org.apache.kafka/kafka-clients/3.0.0/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit
https://cwiki.apache.org/confluence/display/KAFKA/Transactional+Messaging+in+Kafka
https://cwiki.apache.org/confluence/display/KAFKA/Transactional+Messaging+in+Kafka
https://www.confluent.io/blog/transactions-apache-kafka/
https://tgrez.github.io/posts/2019-04-13-kafka-transactions.html


and add nodes in support channels on Slack. Red-
panda has since added some documentation for the
decommission command.
These membership changes were difficult to execute
correctly in unhealthy networks. Both rpk cluster
info and the /v1/brokers API could return arbitrar-
ily stale views of the cluster, which could lead to oper-
ators concluding that a node had completed its decom-
missioning process when it was, in fact, still handing
off data to other members. We suspect that in practice
this should be a rare occurrence: most network parti-
tions last a few days at most, and nodes are usually
not removed immediately after being added.
Still, operators who wish to perform node changes
more safely (or rapidly!) can use a new API:
/v1/cluster_view. This view of the cluster includes a
monotonic version field which can be used to ensure
one sees only successive views of the cluster state. To
safely remove a node, one should:

1. Read a cluster view containing the node ID one
intends to remove.

2. Issue a decommission request for that node.
3. Wait until one has read a cluster view which is of

a higher version than the initial view, and does
not contain the given node ID.

After this, it should be safe to tear down the decom-
missioned node. This API was just released in version
21.11.15.
Another potential pitfall: one should always generate
new, unique node IDs when adding nodes to a Red-
panda cluster. Reusing previously generated IDs—
even if those nodes are no longer a part of the cluster—
could lead to data loss. This too was undocumented.
Redpanda is expanding their documentation to ex-
plain membership change operations in detail.

4.6 Future Work

Normally, Jepsen tests bind each logical process in the
test to a single node in the cluster, and stripe pro-
cesses across nodes. This allows Jepsen to observe the
state of different nodes simultaneously, which is key
to finding concurrency bugs. The Java Kafka client,
by contrast, fetches the list of all nodes in the cluster

from whichever node it initially connects to, and from
there establishes independent connections to different
servers on its own. We were unable to easily inter-
fere with this process, which means that our tests may
have failed to identify split-brain or other anomalies
between nodes. Every client may, assuming a stable
topology, have routed all their requests for a given par-
tition to a single node, rather than multiple nodes. We
would like to revisit this problem and devise a way to
constrain Kafka clients to talk only to specific nodes.
Our membership tests only examined polite node re-
moval, where we issued a decommission request and
allowed the node to hand off its data before wiping
the node clean. Future testing might explore limited
numbers of unplanned node removals, to explore what
happens when (e.g.) a hard disk fails and cannot be
recovered. We also discussed the possibility of inject-
ing filesystem-level faults, but have not implemented
them yet.
Our queue and list-append workloads used a fixed
number of partitions per topic. Future work could ex-
pand the number of partitions dynamically.
Finally, we were unable to obtain exactly-once seman-
tics during our transaction testing—possibly because
of the structure of our transactions. Redpanda has
suggested a more complex way of using the transac-
tion API which might provide stronger guarantees.
We’d like to integrate that into the Jepsen tests some-
day.
Jepsen carried out an informal poll of a handful of
Kafka users to better understand their use of transac-
tions. Several reported they had adopted the Kafka
Streams API rather than using the producer trans-
action API directly. Perhaps Kafka Streams offers
stronger guarantees! Future tests might explore
Kafka Streams behavior, and see whether it prevents
some of the transactional anomalies we observed.
This work was funded by Redpanda Data, and con-
ducted in accordance with the Jepsen ethics policy.
Jepsen wishes to thank the Redpanda team for their
assistance—especially Camilo Aguilar, Travis Bischel,
Bob Dever, Juan Castillo, Alexander Gallego, Dhruv
Gupta, Michal Maslanka, Denis Rystsov, John Spray,
Coral Waters, David Wang, and Noah Watkins. We
would also like to thank Irene Kannyo for her editorial
support during preparation of this manuscript.

18

https://docs.redpanda.com/docs/reference/rpk-commands/#rpk-redpanda-admin-brokers-decommission
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://redpanda.com
https://jepsen.io/ethics.html

	Background
	Safety
	Transactions
	Transactional IDs

	Test Design
	List-Append
	Queue

	Results
	Duplicate Writes by Default (#1)
	Duplicate Writes with Idempotence Explicitly Enabled (#3039)
	Assert Failure Deallocating Partitions (#3335)
	Assert Failure in response.partition_index (#3336)
	Inconsistent Offsets (#3003)
	Lost/Stale Messages (#6)
	Aborted Read With NotLeaderOrFollower (KAFKA-13574)
	Write Cycles (#8)
	Aborted Reads & Circular Information Flow (#3036)
	Internal Non-Monotonic Polls (#10)
	Aborted Read With InvalidTxnState (#3616-a)
	Lost Transactional Writes (#3616-b)

	Discussion
	Mild Surprises
	Non Fault-Tolerant Defaults
	Transaction Isolation
	Exactly-Once Semantics
	Membership Changes
	Future Work


