Redpanda

COMPARISON

Kafka vs.
Redpanda

—_

Introduction

Development and operational experience

Kafka APl compatibility

Single-process deployment

No ZooKeeper to manage
JVM-free

Runs anywhere

Built-in observability, rpk, and operator friendliness

The best Ul for managing Kafka environments

Performance and throughput

What makes Redpanda faster?

Designed for modern hardware

100% of memory allocated upfront

Bypasses Linux page cache

Leveraging cgroups

The outcome

Total cost of ownership (TCO)

What makes Redpanda more cost-effective than Kafka?

Infrastructure (Compute and Storage)

0 0 0O O O O O O oo o o P W W W N N NN

Administration

o

Reliability and enterprise readiness

(@]

What makes Redpanda reliable and scalable?

(@]

Instant horizontal scalability

@]

Ensures zero data loss

(@)

Support for Kafka transactions

o

Ensures predictable performance at scale

—_
—

Workload isolation

—_
—_

Commitment towards open-source

—
N

Advanced capabilities

—
N

Intelligent tiered storage

—
w

Remote read replicas

—_
~

Continuous data balancing

—_
~

Onboard data transforms

—
o1

Summary

Redpanda

Introduction

Redpanda and Apache Kafka® are two event-streaming platforms for high-performance data
pipelines, real-time analytics, and mission-critical workloads. Kafka was initially introduced at
LinkedIn as a distributed message queue and was subsequently open-sourced in early 2011.
Redpanda is a C++ rewrite of Kafka, backed by Redpanda Data, which aims to make real-
time streaming more accessible for the great majority of developers, who are underserved by
existing solutions.

There are several commonalities between Redpanda and Kafka. Both drive their vision based on
community feedback and contribution through open-source or source-availalbe licensing. Both
utilize distributed commit-log or immutable append-only log architectures as the basis for their
data storage. Apart from that, both expose compatible APIs to the outside—Redpanda is API-
compatible with Kafka.

However, while Redpanda and Kafka are trying to address the same problem in the streaming
space, significant differences exist in their approaches. Runtime is one area where they diverge.
Redpanda is based on a C++ runtime, optimized to squeeze the maximum resources out of its
hardware, whereas Kafka is based on the JVM and depends on hands-on engineering to gain
performance. These will be discussed in the performance section of this paper.

Moreover, Redpanda puts a lot of effort into increasing developer productivity. Redpanda, by
design, utilizes the Raft protocol for distributed consensus. That eliminates the dependency on
ZooKeeper®, simplifying the operation in production. Also, Redpanda packages capabilities that
advance the state of data streaming. Onboard data transforms and intelligent tiered storage are
examples. All these factors contribute to a greater developer experience in the long term.

The coming sections of this paper compare and contrast both technologies in broader detail.
The sections are categorized as follows for more clarity.

Development experience
Performance and throughput

Total cost of ownership

Reliability and enterprise readiness

oR W N e

Advanced capabilities

Redpanda 1
SRS

https://redpanda.com/platform/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=platform_page
https://kafka.apache.org/
https://blog.linkedin.com/2011/01/11/open-source-linkedin-kafka
https://redpanda.com/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=homepage
https://redpanda.com/blog/cpp-streaming-data-platform?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_version=ecosystem&utm_source=gated_content&utm_medium=content&utm_campaign=c_plus_plus_blog

Development and operational experience

Redpanda’s single-process deployment combined with developer-friendly experience eliminates
complexity routine to Kafka environments.

Kafka API compatibility

Redpanda is API-compatible with Kafka.

This means Redpanda is a drop-in replacement for existing Kafka-based systems, providing an
easy migration path without requiring changes to existing applications. Moreover, Kafka API
compatibility enables Redpanda to seamlessly integrate with the Kafka ecosystem and tooling
built up over the years. For example, existing Kafka Connectors, CLI tools, and schema registries
can be integrated with Redpanda.

Thinking from a developer’s standpoint, switching to Redpanda means bringing their existing
Kafka skills and toolsets to the trade. No up-skilling is necessary.

Single-process deployment

Typical Kafka production deployment consists of separate systems such as ZooKeeper,
schema registry to manage event schemas, and an HT TP proxy to securely expose Kafka
APIs to the outside. These systems come as separate binaries, requiring separate deployment,
management, and monitoring efforts.

Redpanda bundles these systems together and packages them into a single binary, making

it simpler for operators to deploy and manage. For example, Redpanda has a built-in schema
registry, providing tools to describe the stored events. Also, Pandaproxy is an integrated HTTP
proxy that exposes Redpanda features as REST APlIs.

No ZooKeeper to manage

A production Kafka cluster relies on ZooKeeper for cluster coordination and metadata
management. ZooKeeper runs as a separate cluster that must be managed by an operator.
Typically, a ZooKeeper cluster requires three nodes at minimum to obtain a quorum.

Redpanda 2
SRS

https://redpanda.com/blog/category/tutorial/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=blog_tutorial_category
https://redpanda.com/blog/schema_registry/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=schema_registry_blog
https://redpanda.com/blog/schema_registry/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=schema_registry_blog
https://redpanda.com/blog/pandaproxy/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=pandaproxy_blog

ZooKeeper has been seasoned well over the past decade, delivering value as expected.
However, it requires a specialized skill to deal with problems as they inevitably occur, leading to
operational overhead.

Kafka has recently eliminated the dependency on ZooKeeper with its version 30 release. The
famous KIP-500 was instrumental in getting there.

Conversely, Redpanda took a different approach. It was a design decision to leverage the open-
source Raft consensus algorithm to eliminate the need for a third-party consensus system like
ZooKeeper. That thoughtful decision helped Redpanda to reduce the operational complexity.

JVM-free

Historically, many streaming technologies were centered on Java. Building, troubleshooting, and
operating these systems was challenging for a typical developer without sufficient knowledge in
distributed systems, Java, and JVM performance engineering.

Redpanda breaks this pattern by moving away from the JVM and opening doors to non-JVM
communities to build streaming architectures in a scalable way.

Runs anywhere

Redpanda runs easily and efficiently on many platforms, including desktops, ARM devices, loT
platforms, etc. Its single binary approach makes it especially convenient for small footprint local
environments.

Built-in observability, rpk, and operator friendliness

Redpanda packs many features to make DevOps and SRE life easier. For example, rebalancing
of load, data, and leadership is automatically handled, freeing operators from manual work.
Also, Redpanda provides a native K8s operator and built-in Prometheus support to speed up
infrastructure provisioning and integrate with existing monitoring capabilities.

Redpanda also provides Redpanda Keeper (rpk), a developer-friendly CLI utility that helps
manage Redpanda deployments on your desktop or in production.

Redpanda 3

https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://raft.github.io/
https://docs.redpanda.com/docs/reference/rpk-commands?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=rpk_commands_doc

The best Ul for managing Kafka environments

Redpanda Console gives application developers and Redpanda operators the easiest, most
complete web Ul for visibility into data streams and powerful features for debugging and cluster
administration. Avoid resorting to a patchwork of command line tools and log files to build your
own troubleshooting and administration workflows. Redpanda Console is a comprehensive Ul
for:

m Time travel debugging through historical messages to identify and debug problems
m Quickly sift through real-time messages to understand the “now”

m Easily view messages encoded in Avro, Protobuf, Binary, JSON, XML, and more

m | everaging search and programmable filters to monitor millions of messages

m Visually managing Kafka ACLs, topics, schemas, and Kafka Connect

®m Monitoring consumer groups, partitions, broker settings, and more

Redpanda Console features many industry-first capabilities, such as the Programmable Push
Filters which allows you to quickly narrow down the range of messages you are looking for. Push
filters are custom pieces of logic written in JavaScript or TypeScript that allow developers or
admins to express the types of messages that are of interest and surface them in the console.

Also unigue to the Redpanda Console is a comprehensive capability to manage Kafka ACLs, an
ability limited heretofore to configuration files and command lines. Redpanda Console’s visual
interface enables admins to more easily understand security policies, and helps admins avoid
configuration mistakes that could result in security breaches.

Redpanda 4
SRS

https://docs.redpanda.com/docs/console/installation/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=redpanda_console_docs

Performance and throughput

Written in Java, Kafka takes advantage of cheap disks to store and cache its data and delivers a
good performance by utilizing the file system to its fullest.

Kafka favors an approach towards the economy of cheap disks scaling horizontally. Under the
hood, it leverages sequential IO and Zero Copy principles to deliver a low-latency read and write
performance.

What makes Redpanda faster?

Written in lower-level C++, Redpanda goes beyond the performance boundaries set by Kafka to
deliver a stellar, predictable performance. Redpanda leverages the Seastar framework to extract
the most out of modern hardware resources with intelligent manipulation of CPU, memory, disk,
and network..

Designed for modern hardware

Hardware is fast, but most do not architect software to take advantage of these hardware
advances. Redpanda’s thread-per-core architecture is optimized for today’s multi-core
hardware and squeezes out every last bit of performance, fully exploiting the resources it runs
on. Redpanda also comes with intelligent auto-tuning out-of-the-box, which automatically
generates optimal settings for a specific hardware/kernel/Redpanda setup.

96 cores VMs - 20x more cores
SSD: $200/TB - 1,000 faster, 10x cheaper

100Gbps NICs - 100x more throughput

ZXPULSAR

$2,500/TB
o ° @
Performance
ﬁ improvement

2007 2011 2020

Typical instance 4 cores

Open-source solution Take advantage of cheap disk Disaggregated Modern hardware +
compute and storage Cloud native

Figure 01 - The evolution of modern hardware over time

Redpanda 5
SRS

https://seastar.io/
https://redpanda.com/blog/tpc-buffers/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=tpc_architecture_blog
https://redpanda.com/blog/autotune-series-part-1-storage/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=autotune_pt_1

100% of memory allocated upfront

Redpanda has no locks on the hot path. By design, Redpanda allocates almost all the
machine memory upfront (minus some small amount for OS) and partitions the allocated
memory between all CPU cores. That amortizes the cost of memory management (allocation,
deallocation) and provides predictable latency.

Bypasses Linux page cache

Redpanda uses Direct Memory Access (DMA) for all its disk 10, bypassing the page cache

for reads and writes. Custom memory management techniques are used to align memory
according to the layout of the filesystem, ensuring Redpanda only flushes as little data as to the
disk.

Moreover, Redpanda leverages the XFS partitions to drive NVMe SSDs at their maximum
throughput at all times. Redpanda favors XFS due to its sparse file system support to flush
concurrent, non-overlapping pages.

Leveraging cgroups

To run at peak performance for extended periods, Redpanda leverages cgroups to isolate
its processes. This shields Redpanda from “noisy neighbors,” processes running alongside
Redpanda which demand sharing resources that adversely affect performance.

The outcome

Combining all these factors, Redpanda delivers at least 10x faster tail latencies than Apache
Kafka and uses up to 3x fewer nodes to do so. A recent performance benchmarking study
confirms this fact.

Redpanda 6

https://en.wikipedia.org/wiki/Cgroups
https://redpanda.com/blog/redpanda-vs-kafka-performance-benchmark

1GB/sec: End-to-End Latency Percentiles: lower is better

Kafka - 6 Nodes (2x more hardware)

G000 [== =77 == = === mmmm oo

5000 - —==F=mmmmmmm e

B 4000 Frmmmm oo
5
.
2

L L e A
©
|

7 e (e

Kafka - 9 Nodes (3x more hardware)

1000 ===t mmmm e oo oL

Redpanda - 3 Nodes

1
p51.022 p90.000 p99.900 p99.999

Percentile

. Redpanda - 3 Nodes . Kafka - 6 Nodes . Kafka - 9 Nodes

Figure 02 - Kafka vs. Redpanda latency comparison

Redpanda 7

https://redpanda.com/blog/fast-and-safe/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=fast_safe_benchmark

Total cost of ownership (TCO)

Redpanda offers significantly lower TCO over Kafka, le ading up to 3x to 6x more cost savings
compared to Kafka, reducing cloud costs, engineering time, and maintenance time.

What makes Redpanda more cost-effective than Kafka?

Innovative features in Redpanda’s architecture contribute to delivering a significantly lower
TCO, in terms of infrastructure and administration.

Infrastructure (Compute and Storage)

Redpanda is built to fully saturate fast SSD and NVMe devices and to take advantage of multi-
core and high-memory machines. Redpanda instances use hardware optimally, allowing for
smaller deployments with low end-to-end latency that are consistent even at high throughputs.

Tiered storage is another Redpanda feature contributing to reduced cloud storage costs
because S3 storage is significantly cheaper than SSD/NVMe-based instances. That also
reduces the operational complexity of running a large Kafka cluster that is sized simply for
retention.

Administration

Redpanda users spend significantly less time monitoring and tuning a Redpanda cluster over a
Kafka cluster. That's because Redpanda has a number of features that make Redpanda easier
to maintain. These include things like an autotuner, leadership balancing, continuous data
balancing, maintenance mode, and rolling updates.

Redpanda 8

https://redpanda.com/blog/engineering-redpanda-multi-core-hardware
https://redpanda.com/blog/engineering-redpanda-multi-core-hardware
https://redpanda.com/blog/tiered-storage-architecture-shadow-indexing-deep-dive

Annual Operating Costs - Redpanda and Apache Kafka

I Admin Costs [Prime Infrastructure

$800,000
$600,000
$400,000

$200,000

$0

Redpanda Kafka Redpanda Kafka Redpanda Kafka
S50MB/sec 50MB/sec 500MB/sec 500MB/sec 1GB/sec 1GB/sec

Figure 03 - Consolidated Total Cost of Ownership comparison of Kafka and Redpanda across all workloads.

A recent TCO comparison revealed that Redpanda is up to 6x more cost-effective than Apache
Kafka, and 10x faster.

Redpanda ®

https://redpanda.com/blog/redpanda-vs-kafka-total-cost-ownership-comparison

Reliability and enterprise readiness

Kafka achieves fault tolerance by replicating its partitions across multiple brokers. When Kafka
receives a message, it is written to a partition and subsequently replicated to other brokers

in the cluster based on the replication factor. In case of a broker failure, its partitions can be
recovered from the remaining brokers.

Kafka's replication is a complicated process that is executed synchronously with the strong
involvement of the ZooKeeper. While ZooKeeper handles scenarios like leader election

and broker coordination, which is critical for recovering from failures, it often reduces the
performance and adds management overhead.

What makes Redpanda reliable and scalable?

Redpanda promotes a highly scalable architecture with zero data loss and predictable
performance under high loads to support mission-critical systems.

Instant horizontal scalability

Redpanda leverages the Raft protocol to scale to millions of partitions, simply starting from
laptops to petabytes of data without impacting code. That enables gaining more capacity by
adding more nodes to a Redpanda cluster.

Ensures zero data loss

Redpanda is safe by default, ensuring zero data loss without compromising performance.

Support for Kafka transactions

Redpanda’s support for Kafka transactions ensures data correctness in highly concurrent
scenarios.

Ensures predictable performance at scale

Redpanda utilizes a thread-per-core model, which leads to no locking, minimal context
switching, and thread-local memory access.

Redpanda 10
SRS

Workload isolation

Redpanda’s read replicas are powered by shadow indexing for fast global data and workload
isolation, eliminating noisy neighbors.

Commitment towards open-source

Redpand is source-free, with a large growing community of like-minded developers. That
enables businesses to minimize the risk.

Redpanda »

Advanced capabilities

Redpanda is packed with capabilities that fast track the development of streaming applications,
and eliminate much of the administrative complexity native to traditional Kafka deployments.

Intelligent tiered storage

Redpanda’s native tiered storage facility enables you to retain large amounts of data with a very
small number of nodes. Built on Redpanda’s proprietary Shadow Indexing technology, tiered
storage intelligently offloads data to cloud object stores, keeping only what your consumers
might need local to your cluster. This significantly reduces the cost and complexity of operating
large production systems. Not only that, but tiered storage in Redpanda also gives your
business services low latency access to large windows of data, unlocking a new generation of
real-time analytics use cases.

* Redpanda node

S3 bucket | | Kafka AP Producer

4
| (Remote write I |
N

| i Cache i

Ih 1
| Remote read)l | Kafka AP .> Consumer
— , y
i :
i i
i i

Log segments

Uploaded
segments

Figure 03 - Redpanda’s Shadow Indexing architecture

Redpanda 12

https://docs.redpanda.com/docs/data-management/tiered-storage/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=tiered_storage_doc

Remote read replicas

Building upon the tiered storage capability, Remote Read Replicas allow users to pick topics
from operational clusters and serve them from analytics clusters without duplicating data or
deploying any additional software. Read replicas distribute data close to the workloads and
free engineers from the pressure of picking the right data architecture from the get go. This
feature can propagate new topics on-demand in minutes. Because the data resides in your
cloud storage, Remote Read Replicas can be served on ephemeral hardware with minimal local
storage, enabling a more cost-effective hardware footprint.

Operational Cluster Analytics Clusters
Producers / Consumers Consumers
Consumers (read-only) (read-only)

L1 1 1
& 5 &

L [Nl 11

Figure 04 - Remote Read Replica architecture

Redpanda 13
SRS

https://redpanda.com/blog/remote-read-replicas-for-distributing-work?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_version=engineering&utm_source=gated_content&utm_medium=content&utm_campaign=read_replicas_blog
https://docs.redpanda.com/docs/data-management/remote-read-replicas/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=read_replicas_docs

Continuous data balancing

One of the most complex tasks in streaming data management is protecting clusters against
data seasonality - where 10% of your nodes handle 90% of the traffic. It is inevitable that one of
your customers will generate 80% of your traffic and fill up your disks, dominate the network,
and saturate resources, resulting in performance degradation. This is the “noisy” data neighbor
we all fear.

The continuous data balancing features in Redpanda actively monitor your cluster and
automatically rebalance when adverse events are spotted, keeping data seasonality at bay.
These features liberate your SREs and sysadmins from having to manually administer storage
in your clusters. Continuous data balancing relies on multiple anti-entropy mechanisms to keep
your cluster in its optimal condition. These include:

m Automatic leadership balancing: Works with the Raft quorum to ensure an even
distribution of leaders across all partition-replicas.

m Data balancing on node additions: Triggers partition rebalancing when new nodes are
added to the system.

m Data balancing on node failures: Moves partitions hosted by a failed node to other nodes
in the cluster automatically.

m Data balancing on disk usage: Partitions are redistributed across the cluster when disk
usage reaches a specified percentage of disk capacity.

Onboard data transforms

Redpanda Data Transforms enable developers to easily create modules to perform simple

data transformations on topics within Redpanda. This reduces “data ping-pong” by eliminating
the need to send data out to a stream processor for common transformation tasks like data
scrubbing, cleaning, normalizations, etc. The first iteration of Data Transforms offers support for
Javascript-based modules that are executed in an asynchronous sidecar. Future versions will
offer support for transforms in other languages as well as transforms in line with the write path.

More on the WASM-based data transformation engine architecture can be found here.

Redpanda 14

https://docs.redpanda.com/docs/cluster-administration/continuous-data-balancing/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=cont_data_balancing_docs
https://docs.redpanda.com/docs/data-management/data-transform/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=data_transforms_documentation
https://redpanda.com/blog/wasm-architecture/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=wasm_engine_blog

Summary

Redpanda and Kafka may look similar on the surface, trying to solve the same set of problems
in the event streaming space. But each technology has its internal differences, especially in
architecture, performance, and overall developer experience. Redpanda advances the state of
streaming data with its approach:

= Simple - Compatible with the Kafka API, Redpanda takes a big step ahead of Kafka by
eliminating the development and operational complexity native to Kafka. Delivered as a
single binary, free from ZooKeeper, built-in support for a schema registry, Prometheus,
and an HTTP proxy. Redpanda also comes with the Redpanda Console, an easy to use
web Ul to simplify debugging and management of Kafka environments.

m Fast and reliable - Written in C++, Redpanda has been engineered for greater
performance by utilizing all the resources available in server hardware. This also
contributes to achieving consistent, predictable tail latencies. Besides that, Raft
protocol-based replication architecture plays a vital role in achieving zero data loss.

m Lower TCO - Capabilities like tiered storage, Remote Read Replicas, and Continuous
Data Balancing enable you to store and manage infinite streaming data, and unlock
new use cases. Moreover, since Redpanda automates the bulk of these operational
procedures and leverages cloud storage transparently, you save on costs for hardware,
as well as hours sunk into routine administration.

To learn more about Redpanda, please visit redpanda.com or talk to our product experts at
redpanda.com/contact.

Learn more

To find out more about Redpanda, please contact us or join our community. We're glad to meet
with you to show the advantages Redpanda can bring to your company.

Website: redpanda.com Twitter: @redpandadata

Documentation: docs.redpanda.com Contact us: hi@redpanda.com

Slack: https://redpanda.com/slack Github: github.com/redpanda-data/redpanda
Redpanda 15

https://redpanda.com/?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=homepage
https://redpanda.com/contact?utm_assettype=report&utm_assetname=kafka_redpanda_comparision_report&utm_source=gated_content&utm_medium=content&utm_campaign=contact_us

	Introduction
	Development and operational experience
	Kafka API compatibility
	Single-process deployment
	No ZooKeeper to manage
	JVM-free
	Runs anywhere
	Built-in observability, rpk, and operator friendliness
	The best UI for managing Kafka environments

	Performance and throughput
	What makes Redpanda faster?
	Designed for modern hardware
	100% of memory allocated upfront
	Bypasses Linux page cache
	Leveraging cgroups
	The outcome

	Total cost of ownership (TCO)
	What makes Redpanda more cost-effective than Kafka?
	Infrastructure (Compute and Storage)
	Administration

	Reliability and enterprise readiness
	What makes Redpanda reliable and scalable?
	Instant horizontal scalability
	Ensures zero data loss
	Support for Kafka transactions
	Ensures predictable performance at scale
	Workload isolation
	Commitment towards open-source

	Advanced capabilities
	Intelligent tiered storage
	Remote read replicas
	Continuous data balancing
	Onboard data transforms

	Summary

